
API Consumption Compass
Mike Amundsen

@mamund

#mcaTravels @mamund #api360

The API Consumption Compass

● What is it?
● The Seven Rs of API Consumption
● Summary

2

#mcaTravels @mamund #api360

The API Consumption Compass

3

#mcaTravels @mamund #api360

What is the API Consumption Compass?
4

● Addresses concerns that are important for maximizing
loose coupling between components.

● Helps to treat the dependencies created by API
consumption more responsibly

● Provides a checklist for reviewing API consumers

#mcaTravels @mamund #api360

The Seven Rs

5

#mcaTravels @mamund #api360

The Seven Rs of API Consumption
6

● Risk
● Replacement
● Redundancy
● Resilience

● Rightsizing
● Representation
● Reporting

#mcaTravels @mamund #api360

Risk

● Each API is a possible dependency risk
● Dependency failures can cascade
● Runtime dependency is especially risky

7

#mcaTravels @mamund #api360

Risk Checklist

● Do you have a list of all APIs consumed by a single
service?

● Do you have a plan for replacing each dependency (API)
w/ another solution?

● What runtime protection do you have in place in case the
API becomes too slow, or unreachable?

●

8

#mcaTravels @mamund #api360

Risk Checklist

● If you consume data from an API, do you have a plan to
manage a cache or duplicate set of that data?

● If you write data to an API, do you have runtime protection
in place if the service fails to confirm
writes/updates/deletes?

● Do you monitor the "health status" of the APIs you are
 consuming?

9

#mcaTravels @mamund #api360

Replacement

● What if your API dependency "goes away"?
● Temporarily unavailable (network, service)
● Long-term unavailability (deprecation, cancellation)

10

#mcaTravels @mamund #api360

Replacement Checklist

● Do you have a replacement plan in place for each
consumed API?

● Have you identified at least one replacement for each API
you consume?

● Do you have protection in place when an API becomes
unavailable at runtime (circuitbreaker, etc.)?

●

11

#mcaTravels @mamund #api360

Replacement Checklist

● Do you have protection in place when you can no longer
write to an existing API (queues, etc.)?

● Do you have tests defined that can validate your
replacement implementation?

12

#mcaTravels @mamund #api360

Redundancy

● Functionality "back up"
● Complete copy/mirror
● Partial/Degraded functionality
● Can be costly to set-up/maintain

13

#mcaTravels @mamund #api360

Redundancy Checklist

● Do have at least one alternative provider for each
consumed API (might include changing API providers in
the future)?

● Have you considered identifying a runtime "failover" plan
with a different provider for each consumed API?

● Do you have tests in place (to run before deployment) to
● validate your redundancy implementation?
●

14

#mcaTravels @mamund #api360

Resilience

● Networks can affect availability
● Too slow
● Too much traffic
● Faulty connections

15

#mcaTravels @mamund #api360

Resilience Checklist

● Do you have runtime protection in place in case the API
becomes too slow, or unreachable?

● Do you have runtime support in place for failed API state
changes that write data?

● Do you have timeouts in place to prevent waiting too long
for an API response?

●

16

#mcaTravels @mamund #api360

Resilience Checklist

● Do you send Failfast timing budget values to APIs when
you send a request to them?

● Do you use parallel requests where possible?

17

#mcaTravels @mamund #api360

Rightsizing

● Capacity needs change over time
● Seasonal traffic changes
● Planned increased consumption (new clients, etc.)

18

#mcaTravels @mamund #api360

Rightsizing Checklist

● Do you have a process for evaluating the performance of
your API consumers?

● Do you use correlation IDs to track transactions
throughout your ecosystem?

19

#mcaTravels @mamund #api360

Rightsizing Checklist

● Do you have a dashboard that records the typical
transaction time (in length) as well as reach (# of
components touching the transaction)?

● Do you have a process for evaluating the effectiveness of
interactions with consumed APIs?

20

#mcaTravels @mamund #api360

Representation

● Services send representations
● Negotiating representations is built into HTTP
● Coupling at representation level is more reliable

21

#mcaTravels @mamund #api360

Representation Checklist

● Do you convert the representations you are consuming
into internal models before operating on that data?

● Do you have code that respsonsibly handles invalid
representations?

● Do you robustly handle changes in representations over
time (e.g. via evolution of the API you are consuming)?

22

#mcaTravels @mamund #api360

Representation Checklist

● Do you have runtime protection in place to inspect
representations for malicious code injection?

● Do you have tests that validate these runtime protections?

23

#mcaTravels @mamund #api360

Reporting

● Runtime review of ecosystem performance
● Setting baseline, alerting on trends
● Real-time reporting vs historical analysis
● "Self-healing" recovery

24

#mcaTravels @mamund #api360

Reporting Checklist

● Do you have an established set of metrics all API
consumers must record?
○ Utilization, Saturation, Errors (USE)
○ Rate, Errors, Duration (RED)
○ Latency, Errors, Traffic, Saturation (LETS)

● Do you have the ability to correlate API consumption with
application logic?

25

#mcaTravels @mamund #api360

Reporting Checklist

● Do you have a dashboard service in place to display API
consumer metrics?

● Do you have an automated process that notifies you when
metrics are unusual?

● Do you have an automated process that takes corrective
actions when metrics are unusual?

●

26

#mcaTravels @mamund #api360

Summary

27

#mcaTravels @mamund #api360

Seven Rs
28

● Reduce Dependency Risk
● Plan for Replacement
● Support Runtime Redundancy
● Survive Network w/ Resilience
● Rightsizing for Capacity Changes
● Coupling on Representations
● Use Performance Reporting

API Consumption Compass
Mike Amundsen

@mamund

