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The API Consumption Compass

● What is it?
● The Seven Rs of API Consumption
● Summary
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What is the API Consumption Compass?
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● Addresses concerns that are important for maximizing 
loose coupling between components. 

● Helps to treat the dependencies created by API 
consumption more responsibly

● Provides a checklist for reviewing API consumers
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The Seven Rs
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The Seven Rs of API Consumption 
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● Risk
● Replacement
● Redundancy
● Resilience

● Rightsizing
● Representation
● Reporting
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Risk

● Each API is a possible dependency risk
● Dependency failures can cascade
● Runtime dependency is especially risky
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Risk Checklist

● Do you have a list of all APIs consumed by a single 
service?

● Do you have a plan for replacing each dependency (API) 
w/ another solution?

● What runtime protection do you have in place in case the 
API becomes too slow, or unreachable?

●
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Risk Checklist

● If you consume data from an API, do you have a plan to 
manage a cache or duplicate set of that data?

● If you write data to an API, do you have runtime protection 
in place if the service fails to confirm 
writes/updates/deletes?

● Do you monitor the "health status" of the APIs you are
 consuming?
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Replacement

● What if your API dependency "goes away"?
● Temporarily unavailable (network, service)
● Long-term unavailability (deprecation, cancellation)
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Replacement Checklist

● Do you have a replacement plan in place for each 
consumed API?

● Have you identified at least one replacement for each API 
you consume?

● Do you have protection in place when an API becomes 
unavailable at runtime (circuitbreaker, etc.)?

●
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Replacement Checklist

● Do you have protection in place when you can no longer 
write to an existing API (queues, etc.)?

● Do you have tests defined that can validate your 
replacement implementation?
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Redundancy

● Functionality "back up"
● Complete copy/mirror
● Partial/Degraded functionality
● Can be costly to set-up/maintain
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Redundancy Checklist

● Do have at least one alternative provider for each 
consumed API (might include changing API providers in 
the future)?

● Have you considered identifying a runtime "failover" plan 
with a different provider for each consumed API?

● Do you have tests in place (to run before deployment) to
●        validate your redundancy implementation?
●
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Resilience

● Networks can affect availability
● Too slow
● Too much traffic
● Faulty connections
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Resilience Checklist

● Do you have runtime protection in place in case the API 
becomes too slow, or unreachable?

● Do you have runtime support in place for failed API state 
changes that write data?

● Do you have timeouts in place to prevent waiting too long 
for an API response?

●
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Resilience Checklist

● Do you send Failfast timing budget values to APIs when 
you send a request to them?

● Do you use parallel requests where possible?
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Rightsizing

● Capacity needs change over time
● Seasonal traffic changes
● Planned increased consumption (new clients, etc.)
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Rightsizing Checklist

● Do you have a process for evaluating the performance of 
your API consumers?

● Do you use correlation IDs to track transactions 
throughout your ecosystem?
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Rightsizing Checklist

● Do you have a dashboard that records the typical 
transaction time (in length) as well as reach (# of 
components touching the transaction)?

● Do you have a process for evaluating the effectiveness of 
interactions with consumed APIs?
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Representation

● Services send representations
● Negotiating representations is built into HTTP
● Coupling at representation level is more reliable
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Representation Checklist

● Do you convert the representations you are consuming 
into internal models before operating on that data?

● Do you have code that respsonsibly handles invalid 
representations?

● Do you robustly handle changes in representations over 
time (e.g. via evolution of the API you are consuming)?
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Representation Checklist

● Do you have runtime protection in place to inspect 
representations for malicious code injection?

● Do you have tests that validate these runtime protections?
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Reporting

● Runtime review of ecosystem performance
● Setting baseline, alerting on trends
● Real-time reporting vs historical analysis
● "Self-healing" recovery
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Reporting Checklist

● Do you have an established set of metrics all API 
consumers must record?
○ Utilization, Saturation, Errors (USE)
○ Rate, Errors, Duration (RED)
○ Latency, Errors, Traffic, Saturation (LETS)

● Do you have the ability to correlate API consumption with 
application logic?
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Reporting Checklist

● Do you have a dashboard service in place to display API 
consumer metrics?

● Do you have an automated process that notifies you when 
metrics are unusual?

● Do you have an automated process that takes corrective 
actions when metrics are unusual?

●
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Summary
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Seven Rs
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● Reduce Dependency Risk
● Plan for Replacement
● Support Runtime Redundancy
● Survive Network w/ Resilience
● Rightsizing for Capacity Changes
● Coupling on Representations
● Use Performance Reporting
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