
Simple Expressions
$VarName

(Expr)

()

. (one dot: self)

QName (Expr , ...)

QName ()

IntegerLiteral

DecimalLiteral

DoubleLiteral

StringLiteral

Arithmetic Expressions

+ Expr Expr + Expr

- Expr Expr - Expr

Expr * Expr Expr div Expr

Expr idiv Expr Expr mod Expr

Creating Sequences

Create a sequence from a list of items:

Expr , ...

Note: A sequence list must usually be parenthesized.

Repeat over one or more sequences, returning a
sequence of results:

for VariableBinding , ... return Expr

where a VariableBinding is:

$VarName in Expr

Create a numeric sequences, from lower bound to
upper bound:

Expr to Expr

All the items appearing in either sequence:

Expr union Expr

Expr | Expr

Only items appearing in both sequences:

Expr intersect Expr

All items in the first sequence not in second:

Expr except Expr

Comments in XPath Expressions

(: This is a comment within an XPath expr :)

Testing

Test if the condition is satisfied for at least one
combination of the bound expressions:

some VariableBinding , ... satisfies Expr

Test if the condition is satisfied for all of the
bound expressions:

every VariableBinding , ... satisfies Expr

Select one or the other of two possibiliites:

if (Expr) then Expr else Expr

Either or both of two tests:

Expr or Expr Expr and Expr

Test if they are the same node:

Expr is Expr

Test if a node appears before or after another:

Expr << Expr Expr >> Expr

Test an expression’s dynamic type:

Expr instance of SequenceType

Test if an expression can be converted to a type:

Expr castable as AtomicType

Expr castable as AtomicType?

Compare two atomic values:

Expr eq Expr Expr ne Expr

Expr lt Expr Expr le Expr

Expr gt Expr Expr ge Expr

Compare all items in one sequence to all items in
a second, and return if true for any pair of values:

Expr = Expr Expr != Expr

Expr < Expr Expr <= Expr

Expr > Expr Expr >= Expr

Type Modification Expressions
Use as without converting:

Expr treat as SequenceType

Use as, converting as needed and doable:

Expr cast as AtomicType

Expr cast as AtomicType?

XPath 2.0:
http://www.w3.org/TR/xpath20/

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

Path Expressions

/ Top level, document root

/ Step At top level

Step Relative to current node

// Step Anywhere within document

Path / Step Immediately within Path

Path // Step Anywhere within Path

Where a Step is one of:

Expr

AxisName::NameTest

AxisName::KindTest

@NameTest (attribute test)

NameTest (child element test)

KindTest (child node test)

.. (two dots: parent test)

Followed by zero or more predicates:

[Expr]

Where an AxisName is one of:

ancestor ancestor-or-self

attribute child

descendant descendant-or-self

following following-sibling

namespace parent

preceding preceding-sibling

self

Where a NameTest is one of:

QName

*

NCName:*

*:NCName

Where a KindTest is one of:

attribute (AttributeName)

attribute (AttributeName , TypeName)

attribute (*)

attribute (* , TypeName)

attribute ()

comment ()

document-node (element ...)

document-node (schema-element ...)

document-node ()

element (ElementName)

element (ElementName , TypeName)

element (*)

element (* , TypeName)

element ()

node ()

processing-instruction (NCName)

processing-instruction (StringLiteral)

processing-instruction ()

schema-attribute (AttributeName)

schema-element (ElementName)

text ()

Names and Types
XML QNames, with or without a colon-separated
prefix, is use for all of:

VarName

AttributeName

ElementName

TypeName

AtomicType

A SequenceType is one of:

empty-sequence ()

KindTest

item ()

AtomicType

Where KindTest, item() or AtomicType can be
optionally followed by:

? (may be empty sequence)\

+ (is a non-empty sequence of the type)

* (is a sequence of the type, empty or
not)

Operator Precedence:

1 , (comma)

2 for some every if

3 or

4 and

5 = != < <= > >=
eq ne lt le gt ge is << >>

6 to

7 (two-argument) + -

8 * div idiv mod

9 union |

10 intersect except

11 instance of

12 treat as

13 castable as

14 cast as

15 (one-argument) + -

16 / //

17 step node-test $name
(Expr) function-call literal

Relative Location Paths
Relative Location Paths traverse the document
from the context node

para
para element children
Also - child::para

@type
the type attribute
Also - attribute::type

../title
the title element children of the parent

* except title
child elements except title elements
Also - *[not(self::title)] (works in XPath 1.0)

ancestor::sec
all sec ancestor elements

ancestor::sec/@n
all n attributes on sec ancestor elements

list/(item | step)
item and step element children of list
children, in document order

list/item, list/step
item element children of list children followed
by step children of list children

preceding-sibling::step
all preceding sibling step elements

preceding-sibling::*[1][self::step]
the directly preceding sibling element, if it is a
step (otherwise nothing)

descendant::div[last()]
the last div descendant of the current node

.//div[last()]
div descendants that are the last child div of
each of their parents

preceding::pb[1]
the first (most immediate) preceding pb

ancestor::sec//pb intersect preceding::pb
pb elements inside the same sec element as
the context node, preceding it

p[normalize-space()]
p child elements that have a non-whitespace
value (text content)

*[not(node())]
empty element children (i.e., element children
with no node children)

*[not(node() except (comment()|
 processing-instruction())]
element children that are empty (have no
children) except for comments or processing
instructions

step[position() gt 1]
all step element children but the first

step except *[1]
step element children but the first

step[position() le 4]
the first four step element children
Also - step[position() = (1 to 4)]

step[position() mod 2]
odd-numbered step children

step[not(position() mod 2)]
even-numbered step children

*[position() le 4] intersect step
from the first four element children, the step
children

ancestor-or-self::*[exists(@lang)][1]/@lang
the closest lang attribute on the context node
or an ancestor element

Expressions that are not Location Paths
 (@class,'none')[1]

the class attribute, or if it does not exist, the
string "none".
Also -
 if (exists(@class)) then @class else "none"

//*/name()
the names of all elements, in document order

distinct-values(//*/name())
the names of all elements, in document order,
with duplicates removed

//name/string-join((first, last),' ')
a sequence of strings constructed from the
name elements in the document, each one
concatenating the values of its first and last
element children, in that order, joining them
with spaces
Also - for $n in //name return
 string-join(($n/first,$n/last),' ')

//*/count(ancestor-or-self::*)
a sequence of numbers representing the
depth of each element in the document

max(//*/count(ancestor-or-self::*))
the maximum depth of all elements in the
document (a number in a singleton sequence)

for $stooge in ('Moe','Larry','Curly')
returncount(//p[contains(.,$stooge)])
the counts of all p elements in the document
mentioning each of "Moe", "Larry" and "Curly",
in that order

index-of(('Moe','Larry','Curly'), speaker[1])
if the first speaker element child has the value
"Moe", then 1; if "Larry", then 2; if "Curly",
then 3; otherwise the empty sequence (i.e., no
value)

(: You’ve got to be kidding me. :)
do nothing. A comment is just a comment.

2008-07-21

XPath 2.0
Quick Reference

See also the “XQuery 1.0 & XPath
2.0 Functions & Operators Quick
Reference”

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.
17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA
Phone: +1 301/315-9631
Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

Absolute Location Paths

Absolute Location Paths traverse the document
starting at the top (the root), and can be
recognized by their initial / (forwardslash).

/book/bookinfo/abstract
an abstract element child of a bookinfo child
of the book document element
Also -
/child::book/child::bookinfo/child::abstract

//para
all para elements in the document
Also - /descendant-or-self::*/child::para
Also - /descendant::para

/descendant::para[1]
the first para element in the document
Also - (//para)[1]

//@order-by
all order-by attributes in the document

//list[exists(ancestor::list)]
all list elements that have ancestor
listelements

//list[not(ancestor::list)]
all list elements that do not have ancestor list
elements
Also - //list[not(exists(ancestor::list))]
Also - //list[empty(ancestor::list)]

//(* except title)
all elements except title elements
Also - //*[not(self::title)] (works in XPath 1.0)

//processing-instruction()[not(ancestor::sec/@n = 1)]
all processing instructions with no sec ancestor
elements with n attributes equal to 1

//para[matches(.,'[X|x]{3}')]
all para elements whose value includes the
regular expression [X|x]{3}
Tip - [X|x]{3} matches three X or xcharacters
appearing in a row

//sec[@id = //@rid/tokenize(.,'\s+')]
all sec elements with id attributes whose
values are also given as a value by a
tokenized rid attribute anywhere in the
document
Also - //sec[@id = $rid-values] where
$rid-values is
distinct-values(//@rid/tokenize(.,'\s+'))
Tip - use
distinct-values(//@rid/tokenize(.,'\s+')) to
remove duplicates from the list of tokenized
@rid values
Tip - the regular expression \s+ matches any
contiguous sequence of spaces (space,
linefeed or tab characters)

