
Text/String Functions
codepoint-equal(xs:string?, xs:string?) as

xs:boolean?

codepoints-to-string(xs:integer*) as xs:string

compare(xs:string?, xs:string?) as xs:integer?

compare(xs:string?, xs:string?, xs:string) as
xs:integer?

concat(xs:anyAtomicType?, xs:anyAtomicType?,)
as xs:string

contains(xs:string?, xs:string?) as xs:boolean

contains(xs:string?, xs:string?, xs:string) as
xs:boolean

current-date() as xs:date

current-dateTime() as xs:dateTime

current-time() as xs:time

default-collation() as xs:string

encode-for-uri(xs:string?) as xs:string

ends-with(xs:string?, xs:string?) as xs:boolean

ends-with(xs:string?, xs:string?, xs:string) as
xs:boolean

escape-html-uri(xs:string?) as xs:string

lower-case(xs:string?) as xs:string

normalize-space() as xs:string

normalize-space(xs:string?) as xs:string

normalize-unicode(xs:string?) as xs:string

normalize-unicode(xs:string?, xs:string) as
xs:string

starts-with(xs:string?, xs:string?) as xs:boolean

starts-with(xs:string?, xs:string?, xs:string) as
xs:boolean

string() as xs:string

string(item()?) as xs:string

string-join(xs:string*, xs:string) as xs:string

string-length() as xs:integer

string-length(xs:string?) as xs:integer

string-to-codepoints(xs:string?) as xs:integer*

substring(xs:string?, xs:double) as xs:string

substring(xs:string?, xs:double, xs:double) as
xs:string

substring-after(xs:string?, xs:string?) as xs:string

substring-after(xs:string?, xs:string?, xs:string) as
xs:string

substring-before(xs:string?, xs:string?) as xs:string

substring-before(xs:string?, xs:string?, xs:string)
as xs:string

translate(xs:string?, xs:string, xs:string) as xs:string

upper-case(xs:string?) as xs:string

XSL-List:
http://www.mulberrytech.com/xsl/xsl-list

REGEX Functions
matches(xs:string?, xs:string) as xs:boolean

matches(xs:string?, xs:string, xs:string) as
xs:boolean

replace(xs:string?, xs:string, xs:string) as
xs:string

replace(xs:string?, xs:string, xs:string, xs:string)
as xs:string

tokenize(xs:string?, xs:string) as xs:string*

tokenize(xs:string?, xs:string, xs:string) as
xs:string*

Arithmetic Operators
+ (numeric) as ~numeric

(numeric) + (numeric) as ~numeric

- (numeric) as ~numeric

(numeric) - (numeric) as ~numeric

(numeric) * (numeric) as ~numeric

(numeric) div (numeric) as ~numeric

(numeric) idiv (numeric) as xs:integer

(numeric) mod (numeric) as ~numeric

Arithmetic Functions
abs(numeric?) as ~numeric?

avg(xs:anyAtomicType*) as ~xs:anyAtomicType?

ceiling(numeric?) as ~numeric?

floor(numeric?) as ~numeric?

number() as xs:double

number(xs:anyAtomicType?) as xs:double

round(numeric?) as ~numeric?

round-half-to-even(numeric?) as ~numeric?

round-half-to-even(numeric?, xs:integer) as
~numeric?

sum(xs:anyAtomicType*) as ~xs:anyAtomicType

sum(xs:anyAtomicType*, xs:anyAtomicType?) as
~xs:anyAtomicType?

The eq, ne, lt, gt, le and ge comparisons are
supported for the numeric types.

Sequence Operators
(item()*) , (item()*) as ~item()*

(node()*) union (node()*) as ~node()*

(node()*) intersect (node()*) as ~node()*

(node()*) except (node()*) as ~node()*

(xs:integer) to (xs:integer) as xs:integer*

Node Comparisons
(node()) is (node()) as xs:boolean

(node()) << (node()) as xs:boolean

(node()) >> (node()) as xs:boolean

Sequence and Node Functions
collection() as node()*

collection(xs:string?) as node()*

count(item()*) as xs:integer

data(item()*) as ~xs:anyAtomicType*

deep-equal(item()*, item()*) as xs:boolean

deep-equal(item()*, item()*, string) as xs:boolean

distinct-values(xs:anyAtomicType*) as
~xs:anyAtomicType*

distinct-values(xs:anyAtomicType*, xs:string) as
~xs:anyAtomicType*

doc(xs:string?) as document-node()?

empty(item()*) as xs:boolean

exactly-one(item()*) as ~item()

exists(item()*) as xs:boolean

index-of(xs:anyAtomicType*, xs:anyAtomicType)
as xs:integer*

index-of(xs:anyAtomicType*, xs:anyAtomicType,
xs:string) as xs:integer*

insert-before(item()*, xs:integer, item()*) as
~item()*

last() as xs:integer

nilled(node()?) as xs:boolean?

node-name(node()?) as xs:QName?

one-or-more(item()*) as ~item()+

position() as xs:integer

remove(item()*, xs:integer) as ~item()*

reverse(item()*) as ~item()*

root() as node()

root(node()?) as node()?

subsequence(item()*, xs:double) as ~item()*

subsequence(item()*, xs:double, xs:double) as
~item()*

unordered(item()*) as ~item()*

zero-or-one(item()*) as ~item()?

Miscellaneous Functions
error() as none

error(xs:QName) as none

error(xs:QName?, xs:string) as none

error(xs:QName?, xs:string, item()*) as none

lang(xs:string?) as xs:boolean

lang(xs:string?, node()) as xs:boolean

max(xs:anyAtomicType*) as ~xs:anyAtomicType?

max(xs:anyAtomicType*, string) as
~xs:anyAtomicType?

min(xs:anyAtomicType*) as ~xs:anyAtomicType?

min(xs:anyAtomicType*, string) as
~xs:anyAtomicType?

trace(item()*, xs:string) as ~item()*

Boolean Functions
boolean(item()*) as xs:boolean

false() as xs:boolean

not(item()*) as xs:boolean

true() as xs:boolean

The eq, ne, lt, gt, le and ge comparisons are
supported for the xs:boolean type.

URI, ID and XML Name Functions
base-uri() as xs:anyURI?

base-uri(node()?) as xs:anyURI?

document-uri(node()?) as xs:anyURI?

doc-available(xs:string?) as xs:boolean

in-scope-prefixes(element()) as xs:string*

id(xs:string*) as element()*

id(xs:string*, node()) as element()*

idref(xs:string*) as node()*

idref(xs:string*, node()) as node()*

iri-to-uri(xs:string?) as xs:string

local-name() as xs:string

local-name(node()?) as xs:string

local-name-from-QName(xs:QName?) as
xs:NCName?

name() as xs:string

name(node()?) as xs:string

namespace-uri() as xs:anyURI

namespace-uri(node()?) as xs:anyURI

namespace-uri-for-prefix(xs:string?, element())
as xs:anyURI?

namespace-uri-from-QName(xs:QName?) as
xs:anyURI?

prefix-from-QName(xs:QName?) as xs:NCName?

QName(xs:string?, xs:string) as xs:QName

resolve-QName(xs:string?, element()) as
xs:QName?

resolve-uri(xs:string?) as xs:anyURI?

resolve-uri(xs:string?, xs:string) as xs:anyURI?

static-base-uri() as xs:anyURI?

Built-In Schema Types
These types are available in all implementations.

xs:anyAtomicType xs:gMonth
xs:anySimpleType xs:anyURI
xs:anyType xs:gMonthDay
xs:base64Binary xs:gYear
xs:boolean xs:gYearMonth
xs:date xs:hexBinary
xs:dateTime xs:integer
xs:dayTimeDuration xs:QName
xs:decimal xs:string
xs:double xs:time
xs:duration xs:untyped
xs:float xs:untypedAtomic
xs:gDay xs:yearMonthDuration

http://www.mulberrytech.com/xsl/xsl-list

Date/Time Functions
adjust-date-to-timezone(xs:date?) as xs:date?

adjust-date-to-timezone(xs:date?,
xs:dayTimeDuration?) as xs:date?

adjust-dateTime-to-timezone(xs:dateTime?) as
xs:dateTime?

adjust-dateTime-to-timezone(xs:dateTime?,
xs:dayTimeDuration?) as xs:dateTime?

adjust-time-to-timezone(xs:time?) as xs:time?

adjust-time-to-timezone(xs:time?,
xs:dayTimeDuration?) as xs:time?

dateTime(xs:date?, xs:time?) as xs:dateTime?

day-from-date(xs:date?) as xs:integer?

day-from-dateTime(xs:dateTime?) as xs:integer?

days-from-duration(xs:duration?) as xs:integer?

hours-from-dateTime(xs:dateTime?) as
xs:integer?

hours-from-duration(xs:duration?) as xs:integer?

hours-from-time(xs:time?) as xs:integer?

implicit-timezone() as xs:dayTimeDuration

minutes-from-dateTime(xs:dateTime?) as
xs:integer?

minutes-from-duration(xs:duration?) as
xs:integer?

minutes-from-time(xs:time?) as xs:integer?

month-from-date(xs:date?) as xs:integer?

month-from-dateTime(xs:dateTime?) as
xs:integer?

months-from-duration(xs:duration?) as
xs:integer?

seconds-from-dateTime(xs:dateTime?) as
xs:decimal?

seconds-from-duration(xs:duration?) as
xs:decimal?

seconds-from-time(xs:time?) as xs:decimal?

timezone-from-date(xs:date?) as
xs:dayTimeDuration?

timezone-from-dateTime(xs:dateTime?) as
xs:dayTimeDuration?

timezone-from-time(xs:time?) as
xs:dayTimeDuration?

year-from-date(xs:date?) as xs:integer?

year-from-dateTime(xs:dateTime?) as xs:integer?

years-from-duration(xs:duration?) as xs:integer?

XPath 2.0:
http://www.w3.org/TR/xpath20/
XQuery 1.0:
http://www.w3.org/TR/xquery/
XQuery 1.0 & XPath 2.0 Functions & Operators:
http://www.w3.org/TR/xpath-functions/

XSLT-Only Functions
current() as item()

current-group() as item()*

current-grouping-key() as xs:anyAtomicType?

document(item()*) as node()*

document(item()*, node()) as node()*

element-available(xs:string) as xs:boolean

format-dateTime(xs:dateTime?, xs:string,
xs:string?, xs:string?, xs:string?) as xs:string?

format-dateTime(xs:dateTime?, xs:string) as
xs:string?

format-date(xs:date?, xs:string, xs:string?,
xs:string?, xs:string?) as xs:string?

format-date(xs:date?, xs:string) as xs:string?

format-number(numeric?, xs:string) as xs:string

format-number(numeric?, xs:string, xs:string) as
xs:string

format-time(xs:time?, xs:string, xs:string?,
xs:string?, xs:string?) as xs:string?

format-time(xs:time?, xs:string) as xs:string?

function-available(xs:string) as xs:boolean

function-available(xs:string, xs:integer) as
xs:boolean

generate-id() as xs:string

generate-id(node()?) as xs:string

key(xs:string, xs:anyAtomicType*) as node()*

key(xs:string, xs:anyAtomicType*, node()) as
node()*

regex-group(xs:integer) as xs:string

system-property(xs:string) as xs:string

type-available(xs:string) as xs:boolean

unparsed-text(xs:string?) as xs:string?

unparsed-text(xs:string?, xs:string) as xs:string?

unparsed-text-available(xs:string?) as xs:boolean

unparsed-text-available(xs:string?, xs:string?) as
xs:boolean

unparsed-entity-uri(xs:string) as xs:anyURI

unparsed-entity-public-id(xs:string) as xs:string

Argument Notation
numeric Any of xs:integer, xs:decimal, xs:float

or xs:double.
* A sequence of the indicated type.
? The indicated type or empty sequence.
~ The result type varies depending on the

arguments.
xs: http://www.w3.org/2001/XMLSchema

2008-07-21

XQuery 1.0 &

XPath 2.0

Functions &

Operators

Quick Reference

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.
17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA
Phone: +1 301/315-9631
Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

Date/Time Operators
(xs:date) + (xs:dayTimeDuration) as xs:date

(xs:date) + (xs:yearMonthDuration) as xs:date

(xs:dateTime) + (xs:dayTimeDuration) as
xs:dateTime

(xs:dateTime) + (xs:yearMonthDuration) as
xs:dateTime

(xs:dayTimeDuration) + (xs:dayTimeDuration) as
xs:dayTimeDuration

(xs:time) + (xs:dayTimeDuration) as xs:time

(xs:yearMonthDuration) + (xs:yearMonthDuration)
as xs:yearMonthDuration

(xs:date) - (xs:date) as xs:dayTimeDuration

(xs:date) - (xs:dayTimeDuration) as xs:date

(xs:date) - (xs:yearMonthDuration) as xs:date

(xs:dateTime) - (xs:dateTime) as
xs:dayTimeDuration

(xs:dateTime) - (xs:dayTimeDuration) as
xs:dateTime

(xs:dateTime) - (xs:yearMonthDuration) as
xs:dateTime

(xs:dayTimeDuration) - (xs:dayTimeDuration) as
xs:dayTimeDuration

(xs:time) - (xs:dayTimeDuration) as xs:time

(xs:time) - (xs:time) as xs:dayTimeDuration

(xs:yearMonthDuration) - (xs:yearMonthDuration)
as xs:yearMonthDuration

(xs:dayTimeDuration) * (xs:double) as
xs:dayTimeDuration

(xs:yearMonthDuration) * (xs:double) as
xs:yearMonthDuration

(xs:dayTimeDuration) div (xs:dayTimeDuration) as
xs:decimal

(xs:dayTimeDuration) div (xs:double) as
xs:dayTimeDuration

(xs:yearMonthDuration) div (xs:double) as
xs:yearMonthDuration

(xs:yearMonthDuration) div
(xs:yearMonthDuration) as xs:decimal

The eq, ne, lt, gt, le and ge comparisons are
suppoted for the types: xs:date and xs:time.

The eq and ne (only) comparisons are supported
for the types: xs:duration, xs:gDay,
xs:gMonth, xs:gMonthDay, xs:gYear and
xs:gYearMonth.

The lt, gt, le and ge (only) comparisons are
supported for the types: xs:dayTimeDuration
and xs:yearMonthDuration.

Other Comparisons
The eq and ne (only) comparisons are supported

for the types: xs:base64Binary, xs:hexBinary,
xs:NOTATION and xs:QName.

http://www.w3.org/TR/xpath-functions/

