
What is REST?

From SOA to REST:
Designing and Implementing
RESTful Services [./]

Tutorial at WWW2009
[http://www2009.org/] (Madrid,
Spain)

Erik Wilde (UC Berkeley School of Information)

April 21, 2009

 [http://creativecommons.org/licenses/by/3.0/]

This work is licensed under a CC
Attribution 3.0 Unported License [http://creativecommons.org/licenses/by/3.0/]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]

Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Contents

2

4

5

6

7

8

9

11

12

13

14

15

16

18

20

21

22

23

25

26

27

30

31

32

33

34

35

Erik Wilde: What is REST?

Contents
Abstract

1 Abstraction Layers

What is REST?

What is Architecture?

Architecture Examples

Architecture vs. Design

Architectural Styles

REST is not an Architecture

2 REST: The Definition

The REST Architectural Style

Resource Identification

Uniform Interface

Self-Describing Messages

Hypermedia Driving Application State

Stateless Interactions

3 Web Architecture

What is the Web?

3.1 Uniform Resource Identifier (URI)

Identifying Resources on the Web

URI Schemes

Query Information

Processing URIs

3.2 Hypertext Transfer Protocol (HTTP)

How RESTful Applications Talk

HTTP Methods

Cookies

4 Representations

4.1 Structured Documents

What is a URI?

Extensible Markup Language (XML)

JavaScript Object Notation (JSON)

JSON Example

Resource Description Framework (RDF)

Atom

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

37

38

40

41

42

43

44

45

46

4.2 Linked Documents

Making Resources Navigable

URI Templates

5 State

State Management on the Web

State in HTML or HTTP

State in the Server Application

State as a Resource

Stateless Shopping

Reusing Resources

Conclusions

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(2)

Erik Wilde: What is REST?

Abstract
Representational State Transfer (REST) is defined as an architectural style, which means
that it is not a concrete systems architecture, but instead a set of constraints that are
applied when designing a systems architecture. We briefly discuss these constraints, but
then focus on explaining how the Web is one such systems architecture that implements
REST. In particular, the mechanisms of the Uniform Resource Identifiers (URIs), the
Hypertext Transfer Protocol (HTTP), media types, and markup languages such as the
Hypertext Markup Language (HTML) and the Extensible Markup Language (XML). We also
introduce Atom and the Atom Publishing Protocol (AtomPub) as two established ways on
how RESTful services are already provided and used on today's Web.

Abstraction Layers

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(4)What is REST?

Defining Representational State Transfer: 3 popular definitions

An architectural style for building loosely coupled systems
defined by a set of very general constraints (principles)
the Web (URI/HTTP/HTML/XML) is an instance of this style

1.

The Web used correctly (i.e., not using the Web as transport)
HTTP is built according to RESTful principles
services are built on top of Web standards without misusing them
most importantly, HTTP is an application protocol (not a transport protocol)

2.

Anything that uses HTTP and XML (XML without SOAP)
XML-RPC was the first approach for this
violates REST because there is no uniform interface

3.

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Abstraction Layers

(5)

Erik Wilde: What is REST?

What is Architecture?

Architecture is constraint-based design
design without constraints probably is art

Constraints can be derived from a wide variety of sources
technical infrastructure (current landscape and expected developments)
business considerations (current landscape and expected developments)
time horizon (short-term vs. long-term requirements)
existing architecture
scalability
performance (based on performance requirements and definitions)
cost (development, deployment, maintenance)

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Abstraction Layers

(6)

Erik Wilde: What is REST?

Architecture Examples

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Abstraction Layers

(7)

Erik Wilde: What is REST?

Architecture vs. Design

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Abstraction Layers

(8)

Erik Wilde: What is REST?

Architectural Styles

Architectural Style vs. Architecture
Architectural Style: General principles informing the creation of an architecture
Architecture: Designing a solution to a problem according to given constraints
Architectural styles inform and guide the creation of architectures

Architecture: Louvre
[http://en.wikipedia.org/wiki/Louvre]

Architectural Style: Baroque
[http://en.wikipedia.org

/wiki/Baroque_architecture]

Architecture: Villa Savoye
[http://en.wikipedia.org/wiki/Villa_Savoye]

Architectural Style: International Style
[http://en.wikipedia.org

/wiki/International_Style_(architecture)]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Abstraction Layers

(9)

Erik Wilde: What is REST?

REST is not an Architecture

REST is an architectural style
distilled from the Web a posteriori
some of the Web's standards and practices are not perfectly RESTful

SOA probably also is more a style than it is an architecture
SOA's biggest problem: What is a service?

is a service something that is described by RPC-like custom functions?
is a service exposed through a uniform interface?

OASIS [http://www.oasis-open.org/] has a SOA Reference Model TC [http://www.oasis-open.org

/committees/tc_home.php?wg_abbrev=soa-rm]

the Reference Model [http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf] defines a “service”
as “a mechanism to enable access to one or more capabilities, where the access
is provided using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description.”
the Reference Architecture [http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf]

describes a WS-* oriented world view
SOA can be done RESTfully or not

whether a RESTful approach makes sense depends on the constraints
if the constraints allow REST, there should be a good reason for ignoring REST

REST: The Definition

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(11)The REST Architectural Style

A set of constraints that inform an architecture

Resource Identification [Resource Identification (1)]1.
Uniform Interface [Uniform Interface (1)]2.
Self-Describing Messages [Self-Describing Messages (1)]3.
Hypermedia Driving Application State [Hypermedia Driving Application State (1)]4.
Stateless Interactions [Stateless Interactions (1)]5.

Claims: scalability, mashup-ability, usability, accessibility

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

REST: The Definition

(12)

Erik Wilde: What is REST?

Resource Identification

Name everything that you want to talk about
“Thing” in this case should refer to anything

products in an online shop
categories that are used for grouping products
customers that are expected to buy products
shopping carts where customers collect products

Application state also is represented as a resource
next links on multi-page submission processes
paged results with URIs identifying following pages

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

REST: The Definition

(13)

Erik Wilde: What is REST?

Uniform Interface

The same small set of operations applies to everything [Resource Identification (1)]

A small set of verbs applied to a large set of nouns
verbs are universal and not invented on a per-application base
if many applications need new verbs, the uniform interface can be extended
natural language works in the same way (new verbs rarely enter language)
Identify operations that are candidates for optimization

GET and HEAD are safe operations
PUT and DELETE are idempotent operations
POST is the catch-all and can have side-effects

Build functionality based on useful properties of these operations

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

REST: The Definition

(14)

Erik Wilde: What is REST?

Self-Describing Messages

Resources are abstract entities (they cannot be used per se)
Resource Identification [Resource Identification (1)] guarantees that they are clearly
identified
they are accessed through a Uniform Interface [Uniform Interface (1)]

Resources are accessed using resource representations
resource representations are sufficient to represent a resource
it is communicated which kind of representation is used
representation formats can be negotiated between peers

Resource representations can be based on different constraints
XML and JSON can represent the same model for different users
whatever the representation is, it must support links [Hypermedia Driving Application

State (1)]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

REST: The Definition

(15)

Erik Wilde: What is REST?

Hypermedia Driving Application State

Resource representations [Self-Describing Messages (1)] contain links to identified resources
[Resource Identification (1)]

Resources and state can be used by navigating links
links make interconnected resources navigable
without navigation, identifying new resources is service-specific

RESTful applications navigate instead of calling
representations [Self-Describing Messages (1)] contain information about possible
traversals
the application navigates to the next resource depending on link semantics
navigation can be delegated since all links use identifiers [Resource Identification (1)]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

REST: The Definition

(16)

Erik Wilde: What is REST?

Stateless Interactions

This constraint does not say “Stateless Applications”!
for many RESTful applications, state is an essential part
the idea of REST is to avoid long-lasting transactions in applications

Statelessness means to move state to clients or resources
the most important consequence: avoid state in server-side applications

Resource state is managed on the server
it is the same for every client working with the service
when a client changes resource state other clients see this change as well

Client state is managed on the client
it is specific for a client and thus has to maintained by each client
it may affect access to server resources, but not the resources themselves

Security issues usually are important with client state
clients can cheat by lying about their state
keeping client state on the server is expensive (but may be worth the price)

Web Architecture

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(18)What is the Web?

Web = URI + HTTP + (HTML | XML)
RESTful Web uses HTTP methods as the uniform interface

non-RESTful Web uses GET/POST and tunneled RPC calls
a “different RESTful Web” uses Web Distributed Authoring and Versioning
(WebDAV)

Imagine your application being used in “10 browsers”
resources to interact with should be identified [Resource Identification (1)] and linked
[Hypermedia Driving Application State (1)]

a user's preferred font size could be modeled as client state
what about an access count associated with an API key?

Imagine your application being used in “10 browser tabs”
no difference as long as client state is representation-based
cookies are shared across browser windows (different “client scope”)

Uniform Resource Identifier
(URI)

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(20)Identifying Resources on the Web

Essential for implementing a Resource Identification [Resource Identification (1)]

URIs are human-readable universal identifiers for “stuff”
many identification schemes are not human-readable (binary or hex strings)
many RPC-based systems do not have universally identified objects

Making every thing a universally unique identified thing is important
it removes the necessity to scope non-universal identifiers
it allows to talk about all things in exactly the same way

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Uniform Resource Identifier (URI)

(21)

Erik Wilde: What is REST?

URI Schemes
URI = scheme ":" hier-part ["?" query] ["#" fragment]

URIs in their general case are very simple
the scheme identifies how resources are identified
the identification may be hierarchical or non-hierarchical

Many URI schemes are hierarchical
it is then possible to use relative URIs such as in a href="../"
the slash character is not just a character, in URIs it has semantics

[…] the URI syntax is a federated and extensible naming system wherein each
scheme's specification may further restrict the syntax and semantics of identifiers
using that scheme.

“Uniform Resource Identifier (URI): Generic Syntax”, RFC 3986, January 2005 [http://dret.net
/rfc-index/reference/RFC3986]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Uniform Resource Identifier (URI)

(22)

Erik Wilde: What is REST?

Query Information

Query components specify additional information
it is non-hierarchical information further identifying the resource
in most cases, it can be regarded as “input” to the resource

Query components often influence caching
successful GET/HEAD requests may be cached
only cache query string URIs when explicitly requested (Expires/Cache-Control)

The query component contains non-hierarchical data that, along with data in the
path component […], serves to identify a resource within the scope of the URI's
scheme and naming authority […].

“Uniform Resource Identifier (URI): Generic Syntax”, RFC 3986, January 2005 [http://dret.net
/rfc-index/reference/RFC3986]

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Uniform Resource Identifier (URI)

(23)

Erik Wilde: What is REST?

Processing URIs

Processing URIs is not as trivial as it may seem
escaping and normalization rules are non-trivial
many implementations are broken
complain about broken implementations
even more complicated when processing an Internationalized Resource Identifier
(IRI)

URIs are not just strings
URIs are strings with a considerable set of rules attached to them
implementing all these rules is non-trivial
implementing all these rules is crucial
application development environments provide functions for URI handling

Hypertext Transfer Protocol
(HTTP)

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(25)How RESTful Applications Talk

Essential for implementing a Uniform Interface [Uniform Interface (1)]

HTTP defines a small set of methods for acting on URI-identified resources
Misusing HTTP turns application into non-RESTful applications

they lose the capability to be used just by adhering to REST principles
it's a bad sign when you think you need an interface description language

Extending HTTP turns applications into more specialized RESTful applications
may be appropriate when more operations are required
seriously reduces the number of potential clients

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Hypertext Transfer Protocol (HTTP)

(26)

Erik Wilde: What is REST?

HTTP Methods

Safe methods can be ignored or repeated without side-effects
arithmetically safe: 41 × 1 × 1 × 1 × 1 …
in practice, “without side-effects” means “without relevant side-effects”

Idempotent methods can be repeated without side-effects
arithmetically safe: 41 × 0 × 0 × 0 × 0 …
in practice, “without side-effects” means “without relevant side-effects”

Unsafe and non-idempotent methods should be treated with care
HTTP has two main safe methods: GET HEAD
HTTP has two main idempotent methods: PUT DELETE
HTTP has one main overload method: POST

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Hypertext Transfer Protocol (HTTP)

(27)

Erik Wilde: What is REST?

Cookies

Cookies are client site state bound to a domain
they are convenient because they work without having to use a representation
they are inconvenient because they are not embedded representations

Cookies are managed by the client
they are shared across browser tabs
they are not shared across browsers used by the same user
essentially, the client model of cookies is a bit outdated

Two major things to look out for when using cookies:
session IDs are application state (i.e., non-resource state)1.
cookies break the back button (requests contain a “URI/cookie” combo)2.

The ideal RESTful cookie is never sent to the server
cookies as persistent data storage on the client
interactions with the server are only using URIs and representations

Representations

Structured Documents

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(30)What is a URI?

Essential for implementing Self-Describing Messages [Self-Describing Messages (1)]

also should provide support for Hypermedia Driving Application State [Hypermedia

Driving Application State (1)]

Resource Identification [Resource Identification (1)] only talks about an abstract resource
resources are never exchanged or otherwise processed directly
all interactions use resource representations

Representations depend on various factors
the nature of the resource
the capabilities of the server
the capabilities or the communications medium
the capabilities of the client
requirements and constraints from the application scenario
negotiations to figure out the “best” representation

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Structured Documents

(31)

Erik Wilde: What is REST?

Extensible Markup Language (XML)

The language that started it all
created as a streamlined version of SGML
took over as the first universal language for structured data

XML is a metalanguage (a language for representing languages)
many domain-specific languages are defined as XML vocabularies
some metalanguages use XML syntax (RDF [Resource Description Framework (RDF) (1)] is
a popular example)

XML is only syntax and has almost zero semantics
very minimal built-in semantics (language identification, IDs, relative URIs)
semantics are entirely left to the XML vocabularies

XML is built around a tree model
each XML document is a tree and thus limited in structure
RESTful XML introduces hypermedia to turn XML data into a graph

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Structured Documents

(32)

Erik Wilde: What is REST?

JavaScript Object Notation (JSON)

The XMLHttpRequest API has been built for requesting XML via HTTP
this is useful because XML is the most popular data format
all requested data has to be processed by using XML access methods in
JavaScript

JavaScript does not have XML as its internal data model
the XML received via XMLHttpRequest has to be parsed into a DOM tree
DOM access in JavaScript is inconvenient for complex operations
alternatively, the XML can be mapped to JavaScript objects (also requires
parsing)

JavaScript Object Notation (JSON) encodes data as JavaScript objects
because the consumer is written in JavaScript, this is more efficient for the
consumer
this turn the generally usable XML service into a JavaScript-oriented service
for large-scale applications, it might make sense to provide XML and JSON
this can be negotiated with HTTP content negotiation

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Structured Documents

(33)

Erik Wilde: What is REST?

JSON Example
<?xml version="1.0"?>

<menu id="file" value="File">

 <popup>

 <menuitem value="New" onclick="CreateNewDoc()"/>

 <menuitem value="Open" onclick="OpenDoc()"/>

 <menuitem value="Close" onclick="CloseDoc()"/>

 </popup>

</menu>

{ "menu" : {

 "id" : "file",

 "value" : "File",

 "popup" : {

 "menuitem" : [

 { "value" : "New", "onclick" : "CreateNewDoc()" },

 { "value" : "Open", "onclick" : "OpenDoc()" },

 { "value" : "Close", "onclick" : "CloseDoc()" }

]

 }

}}

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Structured Documents

(34)

Erik Wilde: What is REST?

Resource Description Framework (RDF)

Developed around the same time as XML was developed
based on the idea of machine-readable/understandable semantics
builds the Semantic Web as a parallel universe on top of the Web

RDF uses URIs for naming things
RDF's data model is based on (URI, property, value) triples
triples are combined and inference is used to produce a graph

RDF is a metalanguage built on the triple-based data model
RDF has a number of syntaxes (one of them is XML [Extensible Markup Language (XML)

(1)]-based)
RDF introduces a number of schema languages (often referred to as ontology
languages)

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Structured Documents

(35)

Erik Wilde: What is REST?

Atom

A language for representing syndication feeds
Much more modest in its goal than XML [Extensible Markup Language (XML) (1)] or RDF [Resource

Description Framework (RDF) (1)]

models feeds as a sets of entries with associated metadata
uses an XML vocabulary for representing the data model
uses links for expressing relationships in the data model

Will be discussed in detail as a good foundation for REST [REST in Practice]

Linked Documents

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(37)Making Resources Navigable

Essential for using Hypermedia Driving Application State [Hypermedia Driving Application State

(1)]

RPC-oriented systems need to expose the available functions
functions are essential for interacting with a service
introspection or interface descriptions make functions discoverable

RESTful systems use a Uniform Interface [Uniform Interface (1)]

no need to learn about functions
but how to find resources?
find them by following links from other resources1.
learn about them by using URI Templates [URI Templates (1)]2.
understand them by recognizing representations3.

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

Linked Documents

(38)

Erik Wilde: What is REST?

URI Templates

REST does not care about URI details
Apart from the scheme, URIs should be semantically opaque

media types should not guessed by URI (breaks content negotiation)
semantics should not be inferred from inspecting URIs
URIs should not be guessed based on previously encountered URIs

“URI hacking” on the Web works and can be useful
Firefox Go Up [http://dret.typepad.com/dretblog/2008/07/go-up.html] allows easy navigation
up one level
good URIs and bad UIs sometimes turn the address bar into a useful UI

Technically speaking, URI templates are not required by REST
practically speaking, URI templates are a useful best practice
all URI navigable resources should also be navigable using representations

State

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(40)State Management on the Web

Essential for supporting Stateless Interactions [Stateless Interactions (1)]

Cookies [Cookies (1)] are a frequently used mechanism for managing state
in many cases used for maintaining session state (login/logout)
more convenient than having to embed the state in every representation
some Web frameworks switch automatically between cookies and URI rewriting

Cookies have two interesting client-side side-effects
they are stored persistently independent from any representation
they are “shared state” within the context of one browser

Session ID cookies require expensive server-side tracking
not associated with any resource and thus potentially global
load-balancing must be cookie-sensitive or cookies must be global

Resource-based state allows RESTful service extensions

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

State

(41)

Erik Wilde: What is REST?

State in HTML or HTTP

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

State

(42)

Erik Wilde: What is REST?

State in the Server Application

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

State

(43)

Erik Wilde: What is REST?

State as a Resource

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

State

(44)

Erik Wilde: What is REST?

Stateless Shopping

Typical “session scenarios” can be mapped to resources [http://www.peej.co.uk/articles

/no-sessions.html]

Client: Show me your products
Server: Here's a list of all the products
Client: I'd like to buy 1 of http://ex.org/product/X, I am "John"/"Password"
Server: I've added 1 of http://ex.org/product/X to http://ex.org/users
/john/basket
Client: I'd like to buy 1 of http://ex.org/product/Y, I am "John"/"Password"
Server: I've added 1 of http://ex.org/product/Y to http://ex.org/users
/john/basket
Client: I don't want http://ex.org/product/X, remove it, I am "John"/"Password"
Server: I've removed http://ex.org/product/X to http://ex.org/users
/john/basket
Client: Okay I'm done, username/password is "John"/"Password"
Server: Here is the total cost of the items in http://ex.org/users/john/basket

This is more than just renaming “session” to “resource”
all relevant data is stored persistently on the server
the shopping cart's URI can be used by other services for working with its
contents
instead of hiding the cart in the session, it is exposed as a resource

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

State

(45)

Erik Wilde: What is REST?

Reusing Resources

April 21, 2009From SOA to REST:
Designing and Implementing RESTful Services [./]
Tutorial at WWW2009 [http://www2009.org/] (Madrid, Spain)

(46)

Erik Wilde: What is REST?

Conclusions

REST is simple to learn and use
Unlearning RPC in most cases is the hardest part

OO is all about identifying classes and methods
distributed systems very often are built around RPC models
many classical IT architectures are RPC-centric by design

REST and RPC do not mix
resource orientation � function orientation
cooperation � integration
openly distributed � hiding distribution
coarse-grained � fine-grained
complexity in resources formats � complexity in function set

