
Feed Querying as a Proxy for Querying the Web

Erik Wilde1 and Alexandros Marinos2

1 School of Information, UC Berkeley, USA, dret@berkeley.edu
2 Department of Computing, University of Surrey, a.marinos@surrey.ac.uk

Abstract. Managing information, access to information, and updates
to relevant information on the Web has become a challenging task be-
cause of the volume and the variety of information sources and services
available on the Web. This problem will only grow because of the in-
creasing number of potential information resources, and the increasing
number of services which could be driven by machine-friendly access to
these resources. In this paper, we propose to use the established and sim-
ple metamodel of feeds as a proxy for information resources on the Web,
and to use feed-based methods for producing, aggregating, querying, and
publishing information about resources on the Web. We propose an ar-
chitecture that is flexible and scalable and uses well-established RESTful
methods of loose coupling. By using such an architecture, mashups and
the repurposing of Web services is encouraged, and the simplicity of the
underlying metamodel places no undue restrictions on the possible ap-
plication areas.

1 Introduction

The Web’s most astonishing feature is its magnitude and versatility, and thus
the vast amount of information that is available in its resources. However, this
feature also is one of the fundamental problems of the Web: the more information
there is, the harder it gets to find anything. Following the initial and eventually
failed attempts to categorize all Web content in carefully compiled and organized
directories, search engines have transformed the Web into a system which is fully
indexed3 and thus allows to quickly search the Web and find resources based on
simple (but scalable) keyword search.

Currently, search engines are targeted at human users and thus mostly focus
on user interfaces; however, OpenSearch is an attempt to specify an API which
can be used for any web-based service providing (keyword-oriented) search ser-
vices. Even so, many aspects of the search service are unspecified or implicit,
such as the implicit ORDER BY based on methods such as PageRank [14], which
is critically required for the typically loosely defined keyword-based searches. So
while search engines have certainly transformed the Web and helped it grow to
the scale that is has today, their focus on a simple and human-oriented search

3 With the notable exception of what often is referred to as the “Deep Web” [7], which
is all information not accessible to crawling techniques.

2 Erik Wilde and Alexandros Marinos

service limits their applicability to more focused query access to specific col-
lections of information resources. Going beyond this human-centered approach,
the specific question discussed in this paper is: “Is there a way in which various
information publishers and information brokers can provide their services for
effective and easy reuse?”

In the earlier days of the Web, the concept of “Web Query Languages” [9,
11] looked appealing; the idea was to have a query language that operates on the
graph of interconnected Web resources, and retrieves those resources matching
a given query. One problem with that approach is the definition of the query
language itself (it would have to be general to work for many different application
areas, but on the other hand specific enough so that queries could be reasonably
optimized), and the other problem is whether it is reasonable to assume that
“the Web” is usable as “the input” to such a general query language.4 Given
the ever-increasing size of the Web, the increasing ratio of non-static pages, and
the diversity of Web content, it seems unlikely that it will be possible to define
a “Web Query Language” that satisfied the wide variety of possible use cases in
this area.

Looking at the development of the Web landscape, it can be seen that feeds
such as Atom [12] (a reformulation of the various RSS versions) have become a
popular way in which information is made available on the Web today, mostly by
information providers who regularly publish new information resources and want
this stream of information items to be easily available. Syndication arguably is
the most widely available “Web Service” on the Web — however, in most cases,
it is used in a rather constrained way, allowing the client no or little control,
and focusing on time-ordered collections and results. But for the purpose of this
paper, it is important to notice that simple syndication can be regarded as a
“query” into a site or service; as a query to get the latest page of results of a
permanently updated collection of entries. This is a loose model with, in the
most limited case, no query parameters, but it has all the properties of a query
model (an input, a query model, and a result), even though many of the essential
parts (such as the data model of the dataset and the query language) are implicit
and thus not well-defined. Section 2 examines in more detail how such a query
model could be defined so that typical Web service scenarios can be mapped to
the feed metamodel.

In a different scenario, the Semantic Web has its own view of Web resources,
based on resources themselves, and descriptions which are using RDF as the
metamodel. The standard query language for the Semantic Web is SPARQL [17],
which works on an RDF graph. It thus makes the same assumption as some of the
early Web query languages: that all the required input data is readily available

4 Search engine providers will have such a “query language” for the internal represen-
tation they have of their Web crawls, but these “query languages” are highly specific
to the way the crawl data is being managed and not available for public access. A
notable exception to this are features such as Google’s link: search, which allows
users to find pages that link to a given URI, giving them the ability to find incoming
links for a given URI.

Feed Querying as a Proxy for Querying the Web 3

for querying somehow. In this paper, we do not make this assumption, and
instead assume that resources and services are distributed, heterogeneous, and
not necessarily published, so that any scenario that is based on a homogeneous
and/or complete view of Web resources misses essential parts of the evolving
landscape of resources, services, and service systems.

One of the emerging areas that will cause a new wave of many new resources
and services and ways to interact with them is the “Web of Things” [6, 20],
the idea that increasingly, real-world objects will become available on the Web.
The important aspect about the “Web of Things” vision is that not all “things”
will necessarily directly be accessible by HTTP, but that the Web’s RESTful
architecture is perfectly suited to access them through intermediaries which can
then use specialized back-end implementations to actually physically interact
with the networked “things”. Representational State Transfer (REST) [4] is the
key ingredient in this model, because access to the resources uses a uniform
interface which then allows intermediaries to be transparently deployed and used
in a scalable manner.

In previous work, we looked at feeds as query result serializations [21], the
idea being that the generic and loose structure of feeds can serve as a general
abstraction for returning query results in a large variety of scenarios. Currently,
the implicit “query” associated with feeds often is “the last 10 entries of a pre-
defined search set in reverse chronological order”, but this is only due to the
fact that feeds originated in the area of news feeds and content syndication in
general, where such a query was the implicit assumption. Another proposal for
a general adoption of feeds as a container format for Web service interactions
is the idea of feeds of feeds [23], where feeds are used as a packaging mecha-
nism to communicate information about feeds, and more generally speaking, the
observation that feeds satisfy many of the requirements that constitute loose
coupling [15] between service providers and consumers. Ongoing research [3] in
the area of nested feeds looks at the possibilities to manage collections of feeds
by exposing them as feed-represented collections themselves, but this issue is out
of the scope of this paper.

2 Mapping to Feeds

While this is a generalization that does not apply in all cases, it is probably
safe to say that many services delivered across the Web (some through machine-
accessible Web services, the vast majority through human-oriented user inter-
faces) have some part to them that is about collections of resources, and pro-
viding access to these collections and resources. This generalization can be un-
derstood even better in its relation to feeds when looking at AtomPub [5], the
protocol that extends interactions with feeds to a read/write scenario. In Atom-
Pub, a feed is simply a view into a collection, and typically only exposes a part
of that collection, and in a specific way (such as in a time-ordered manner).

It is thus important to stress that feeds are not just a wrapper around period-
ically updated content that has to be delivered to a client. They are a service that

4 Erik Wilde and Alexandros Marinos

makes content available, and this service can be as simple as a time-ordered se-
quence (in the simplest case with no capability to page back and thus essentially
implementing ephemeral access to information resources), or as sophisticated as
a service that provides features such as personalization, localization, customiza-
tion, and the ability to use specific access parameters. This latter and more
sophisticated view of feeds as a generalization of Web services of course does not
comprise all possible Web service scenarios; there are many scenarios where the
simple collection/resource metamodel may be too simple to serve as an adequate
foundation for a service. However, we argue that feeds strike a useful balance
between simplicity and ease-of-use, and the fraction of Web-oriented scenarios
in which they can be used as a foundation for exposing a service.

Based on this service perspective of feeds, it is possible to conceptualize feeds
as the fundamental metamodel underlying a wide variety of service offerings on
the Web.5 There even is an increasing number of publicly available tools and ser-
vices that allow to “reverse-engineer” feeds from regularly updated web pages.6

These approaches, however, suffer from the same drawbacks as all approaches
based on reconstructing implicit models from HTML layout structures: they are
brittle and can easily break when the Web page changes its formatting, and
the scraping of a Web page is unable to reconstruct any information that is
contained in the underlying collection, but not in the Web page representation.
In particular, feeds provide metadata for feeds and entries that in many cases
can be used to publish a rather rich description of the available entries, whereas
reverse-engineered feeds often lack this richness in metadata.

However, while we believe that the simple and basic metamodel of feeds
(unordered collections of resources) is general enough to serve as an abstraction
that can represent an interesting share of the resources and services available on
the web, there of course are much more sophisticated data models which cannot
be simply mapped to feeds without loosing essential information. In some cases,
the sophistication might come in terms of more metadata (in which case Atom’s
extensibility can handle the additional information through extensions, podcasts
are an example for this kind of metadata sophistication), in others, it might
come in terms of more complex relationships than just collections and resources.
In theory, of course, such relations could be expressed by extending the Atom
format as well, but as with all simplifications, if a simple foundation has to be
stretched and extended substantially, the advantages of using such a foundation
might be offset by the disadvantages of being restricted by it.

For the purpose of this paper, we propose that for an interesting subset of the
resources and services made available on the Web, it is possible to map them to
the simple feed metamodel, possibly by adding to it a modest set of extensions
to the basic metamodel.

5 As mentioned above already, by extending the reach of the Web beyond information
resources alone, this view also comprises services of and for real-world objects [20].

6 http://feed43.com/ and http://www.feedyes.com/ are examples for such services.
All these tools work by defining mappings from Web page structures to feeds that
should be derived from them.

Feed Querying as a Proxy for Querying the Web 5

3 Feed Aggregation

One of the major advantages of using a common model for services around
collections of resources is not only the fact that users can use well-known and
established tools for interacting with these services, but also, that these services
become easily composable, because they are built around the same metamodel
and thus there is no need to harmonize their models. When looking at the current
landscape of feeds on the Web, there are two major practical problems that need
to be addressed for easy aggregation:

– Feed Formats: While the feed metamodel of collection and resources is the
same across all feed formats, there are a variety of formats in use (a con-
siderable number of often slightly incompatible RSS versions and Atom).
Furthermore, many feeds are broken in a variety of ways, so consuming
them takes some error-tolerant processing similar to what is required for
processing HTML from the Web. There are numerous libraries/packages in
various programming languages that make this task easier, but they some-
times come with their own undesirable side-effects such as the inability to
process extensions if they are not explicitly supported.

– Collection/Resource Metadata: The set of properties that can be associated
with collections and/or resources varies across the various feed formats, and
this is further complicated if extensions are taken into account. As an ex-
ample, geolocation information associated with a resource can be expressed
in various formats, some of which just use a different syntax (GeoRSS [13]
vs. the older W3C geolocation format for feeds), whereas others (such as
Yahoo!’s WOEID) use a different model of geolocation and thus require
non-trivial mapping to be implemented if for example feeds with different
geolocation methods should be aggregated and then managed using a single
and consistent geolocation model.

The key finding from these observations is that feed aggregation is not neces-
sarily trivial because of varying feed formats and possible problems with varying
metadata properties, but that it is facilitated by the fact that the underlying
metamodel is structurally similar across all feeds. So based on this ability to
combine various feed-based data sources or services reasonably easily (aggrega-
tion) the next question then is how to narrow down results so that only a subset
of resources in a collection are selected. At this point it might be worth pointing
out that the approach taken here has a lot of similarities with the approaches
taken in federated databases scenarios; in these scenarios the exact metamodel
and features of the participating databases is unknown, but they can be dealt
with homogeneously by mapping their individual data models to a shared meta-
model; this is what feeds allow us to do for the approach presented here.

4 Feed Queries

Starting from the general idea of feeds as the universal metamodel for data
sources and services, and thus gaining the ability to aggregate them, the next

6 Erik Wilde and Alexandros Marinos

logical question is how to be more specific, i.e. how to query them. Queries
for feeds can be regarded on two levels: first, how to query a feed that is the
representation of a single underlying collection. In this case, querying the feed
has to be mapped to the data management facilities available for that collection.
The second and more challenging scenario is where a feed is aggregated (as
described in Section 3), and thus the query, although logically pertaining to
the single feed, actually may require distribution across the various aggregated
sources. In this second scenario, various challenges have to be met, because in
some cases it may be possible to propagate queries upstream, but for join-type
queries, there is a limit to this ability. While this second scenario is relevant for
the future vision of the Web as a feed-based service system, it is out of the scope
of this paper.7

The most fundamental question for any query language is the data model it
is operating on (which sets the boundaries for possible language features). Apart
from simple text search (the underlying assumption of OpenSearch) which of-
ten only provides simple combinational operators such as AND, OR, NOT, and
grouping, most query languages imply a structured data model on which they op-
erate. The most relevant languages for the Web-oriented view we are presenting
here are probably SQL [8] (operating on the relational metamodel), XQuery [2]
(operating on XML), and SPARQL [17] (operating on RDF). Naturally, another
area of interest would be the various (spatio-)temporal languages used in stream-
ing systems [1], because this would allow to extend the query scope and model
to also cover spatial and/or temporal dimensions. However, research on how to
best expose real-time streams on the Web has only started recently, and so far
there is no detailed study which data model and query languages would best
fit the Web, and how it should be exposed in an architecturally sound way. To
make the step from specialized standalone systems to making them available on
the Web level, there are two major research challenges:

– Web-oriented Exposure: Many stream-oriented systems have sophisticated
and dedicated real-time features that make them ideal for challenging real-
time applications. However, some of those properties may not make a lot
of sense for direct delivery over the Web, because the Web lacks the highly
optimized architecture and engineering that can only be guaranteed in tightly
coupled settings. In this case, the question to ask is what to expose on the
Web. For example, it may not make sense to expose a real-time stream of

7 It is interesting to note that many approaches and methods of the database field are
applicable here. For example, for the problem of how to handle distributed query
processing in the presence of multiple and potentially heterogeneous underlying data
providers, the database field has come up with distributed query processing and with
data warehouses, two approaches where the first one analytically optimizes query
processing, whereas the second one conveniently first collects all relevant data, and
then provides query capabilities on this unified dataset. For realtime data, though,
data warehousing usually is not a viable option because of inherent offline nature
and thus delays of this approach.

Feed Querying as a Proxy for Querying the Web 7

high-volume data, but it may make a lot of sense to expose services derived
from it such as summaries or notification services.

– Web-oriented Interaction: As the second step after deciding what to expose,
an equally important question is to decide how to expose it. In this paper, we
argue that feeds are a good foundation for many information services on the
Web, but there also are other methods, for example publish/subscribe models
such as the Extensible Messaging and Presence Protocol (XMPP) [19]. It
depends on the scenarios (publish/subscribe ratio, publishing frequency and
variance, acceptable delays) which Web-oriented interaction model fits best
(Section 5 goes into more detail), and we argue that feeds should be the
default solution, if there are no indications that they should not be used.

For the purpose of this paper, we assume that there will be a substantial
number of use cases in which the second question will result in the choice of
feeds as the interaction model of choice, or as one interaction model of choice.
The polling model of feeds does introduce some delays and inefficiencies from the
viewpoint of the client, but on the other hand it introduces optimization potential
in intermediaries, and more importantly significantly reduces the complexity on
the server side.

There currently is no established standard for a feed query language, even
though some sites provide services where users can query feeds and thus can
retrieve custom results for their queries [21]. Providing query services for a feed
has implications for the scalability of feeds, because instead of publishing just one
feed, a feed provider supporting queries needs to either publish a number of feeds
for pre-computed query results (if there are a small number of possible or likely
queries), or it has to actually execute the query on the collection when such a
feed query is issued. Thus, while feed query features are a useful extension of the
feed model, the performance implications need to be taken into account, and one
possible strategy would be to provide feed query features as value-added services,
so that clients using these features could be better controlled (and maybe even
charged).

5 Pull vs. Push

One of the most important constraints of feeds is that they implement a pull
model, in which the feed is made available by the provider, and consumers access
it by “pulling” it from the provider. This model thus creates a certain amount of
overhead, since pulling consumers might pull more often than new information
is available.8 HTTP features such as conditional requests and caching interme-
diaries help to reduce the overhead, but regardless of these optimizations, there
is some inherent inefficiency in the content delivery of the pull model.

The alternative model is the push model, sometimes also referred to as Pub-
lish/Subscribe (PubSub). In this model, the provider notifies consumers when

8 Unfortunately, Atom does not even have metadata to indicate what the most effective
pulling strategy might be (RSS 1.0 has such a field).

8 Erik Wilde and Alexandros Marinos

new content is available, eliminating the polling overhead of the pull model. It is
important to realize, however, that the push model trades efficiency of content
delivery for complexity of subscription. In essence, the price to pay for bet-
ter optimized content delivery is more complex subscription management, and
thus the question of whether push or pull is the “better” model depends on the
application scenario in terms of subscriber base, subscriber churn, disappearing
subscribers, and the pattern of how often and how regularly new content is made
available. The following issues are relevant when making the choice between push
or pull models:

– Ease of Deployment: Pushing trades its higher efficiency in communications
for a more complex management of subscriptions and the need to asyn-
chronously handle incoming notifications. All these issues can be handled
in application programming frameworks, but they are establishing a more
complex framework than a simple pulling model.

– Loose Coupling: Pushing requires subscriptions which need to be managed
somewhere, and there are many potential problems such as repeated un-
and re-subscriptions, orphaned subscriptions, and the general question of
how to address a subscriber when something needs to be pushed. Generally
speaking, pushing requires a more complex management framework that
couples both the provider and the consumer rather tightly to that specific
framework, whereas the more lightweight pulling approach creates a less
tight coupling and typically makes it easier for providers and consumers to
switch infrastructures respectively services.

– Anonymity: Push notifications and anonymity are two conflicting goals.
There are various mechanisms which allow anonymous use of push-based
services (such as anycast services), but these are not widely deployed and
again create a rather tight coupling to such a mechanism if a service is using
them.

The trend on today’s Web is to use push models in the minority of cases,
or only in cases where there is a tighter inherent coupling because of the given
scenario (for example, when a service is accessed by Ajax applications, users
using these applications are more likely to be online and actively working, in
which case it makes sense to use a push model for this setting).

6 RESTful Database Queries

Throughout this paper we suggest using query mechanisms for feeds as a proxy
for representing query services on the Web. An area where this approach can
be applied is direct RESTful access to databases, based on RESTful interac-
tions with the databases’ metamodels (instead of designing a specific RESTful
service for each data model implemented in the databases’ metamodel). This
could be tackled for all major database metamodels and the languages asso-
ciated with them, such as the relational model (SQL), XML (XQuery), RDF

Feed Querying as a Proxy for Querying the Web 9

(SPARQL), column stores, and spatio-temporal databases. The feed-based ap-
proach has advantages because it assumes a homogenous metamodel and thus
collections managed in different types of databases could still be accessed uni-
formly in such a setting; the feed query would be mapped to the databases’
native query language as far upstream as possible, probably at the feed where
only one collection is exposed by one specific database. On the other hand, the
approach to design RESTful interactions with specific database types would ex-
pose more specific features of the underlying metamodel, and could thus allow
for more specialized interactions with these collections.

As an application of the ideas expressed so in this paper, we discuss a proto-
type implementation of a RESTful querying mechanism tailored to the relational
model. The principle behind this approach is to make a relational database avail-
able as a Web-native data service with no extra configuration. To develop our
approach, we incrementally apply the constraints that REST as an architec-
tural style entails to the question of interfacing with a database. At the most
fundamental level, lies the question of resource identification. We consider our
fundamental resources to be a records, tables, and query results. These resources
need to be given URIs within our service. This enables usages such as users ex-
changing query URIs over email or IM protocols, a common use case on the Web
which however is rather unusual when it comes to database queries.

Closely connected to the issue of addressability is the constraint of stateless-
ness, stating that each request should contain all the information needed for the
server to execute it with no assumption of extra server-side state. This, apart
from being necessary for the URI exchange scenario, also leads to simpler ser-
vice design with better scalability properties. In our case, this would require the
use of HTTP Authentication for access control, and the creation of a format to
serialize SQL-like queries in the URI addressing of each query.

Furthermore, REST mandates the manipulation of resources through repre-
sentations. Our resources should be available in different representations, de-
pending on the context. For instance, a human may want to interface with the
data by using an HTML rendering, while an automated client may find plain
XML more efficient. A feed reader would certainly find feeds the most suitable
formats and it seems that feeds are a good general format for communication
of collections of resources, such as a query result, between machines. However
REST does not force us to standardize on one representation type for our re-
sources, encouraging the availability of choice.

The uniform interface is another constraint of REST, aiding in the scala-
bility and evolvability of its applications. It requires that resources are accessed
through a standard set of operations. In the case of HTTP, these operations
include GET, PUT, POST, and DELETE. AtomPub uses all these and by map-
ping our tables to Atom feeds we can utilize these capabilities to give to clients
the ability to edit the data in the database, possibly subject to authentication.

Finally, there is the constraint of hypermedia as the engine of application
state (HATEOAS), sometimes called connectedness. This constraint goes be-
yond addressability and requires all resources be linked to from other resources.

10 Erik Wilde and Alexandros Marinos

requires resources. With HATEOAS in place, a client can discover an API piece-
meal by simply following links. Also, any change in the naming of a resource can
be compensated on the client side simply by rediscovering the renamed resource.
This enhances the loose coupling of RESTful APIs to their clients as it creates a
client-side recourse against breakage and a viable alternative to the complexity
of managing multiple versions of an API for the sake of backwards compatibility.
In our RESTful database access case, HATEOAS can be applied by linking from
queries to instances, but also from queries to other queries possibly in such a
way that it is possible, starting from a general query that selects all the fields
in a table, to navigate to a fine grained query which uses all the features of the
querying language to frame a precise result. The consequence of a successful HA-
TEOAS application would be to render the resource naming scheme irrelevant
as clients would be able to rediscover the URI of a specific resource, whether
query, table or record, if it happened to be renamed, simply by following the
links it followed to locate it in the first place, assuming a known entry point.

The discussion of a RESTful Querying service based on the Atom meta-
model is based on implementation experience of prototype which is being devel-
oped in collaboration with Jiannan Lu of the University of Surrey and Dimitris
Michalakos of the University of Piraeus. The principles discussed above have
either been implemented or are currently being implemented. Next steps for
this research are the capability to create new databases and edit the schema of
a database, again based on the feed metamodel. Also, the RESTful database
framework can become an excellent testbed for the so-far theoretical work on
RESTful Transactions [10].

7 Conclusions

In this paper we have argued that feeds and feed-oriented query mechanisms
can serve as a proxy for querying the Web. While we are not claiming that
all applications on the Web can or should use feeds as a general mechanism
to provide access to resources to provide query services for them, we do argue
that the lightweight approach of feeds, and the simplicity of the underlying
metamodel turn them into “the HTML of machine-readable data.” In the same
way as HTML’s ability to simply publish sequences of simple text structures
has turned the Web into a tremendously successful publishing platform,9 in the
same way the ability of feeds to provide access to collections of resources can
replicate this success on the level of machine-oriented access to resources and
services.

Increasingly, the Web will see large-scale efforts to provide information to
vast data collections such as the reporting information for the 2009 U.S. Recov-
ery Act [22]. In this case, the goal is to provide simple access to the reporting
information of how the $787 billion of the Recovery Act are being spent. Instead

9 And it is important to note that while Web-based publishing has become widespread,
there are still publishing scenarios for which HTML is not a good fit and that use
different methods for a good reason.

Feed Querying as a Proxy for Querying the Web 11

of providing a specialized API for retrieving reporting information, we proposed
to make available feeds which would carry the reporting information in a way
that would allow anybody to subscribe to it through a simple feed reader. More
sophisticated features would allow interested parties to subscribe to reporting
feeds configured to their personal preferences, taking the reporting information
(such as funded agency, subcontractors, geolocation, and job creation perfor-
mance indicators) as input for a “recovery feed query language.” The Recovery
Act reporting infrastructure is a work in progress, but it is significant in its
scale, and in its legislated requirement to make the information available to the
general public, not just to a few specialized IT experts with specific toolsets.

Taking the bigger picture into account, it can be observed that the past years
have seen an emphasis on moving various activities into more Web-oriented
architectures, for example in the Web services area [16]. Further pushing the
envelope of how to apply RESTful principles to more advanced scenarios are
ongoing research efforts towards support for RESTful transactions [10]. The ap-
proach presented in this paper is another contribution to this field, investigating
how a REST design pattern (queries on URI-based resources, in this case feeds)
can be used as a blueprint for a variety of query-oriented services on the Web.

Both approaches, the unified model based on feeds, and RESTful interactions
with specific types of database, have trade-offs in terms of universal usability, and
access to the features of the back-end system. Ideally, both approaches should be
combined, so that a back-end on the one hand exposes a (possibly limited) feed-
oriented service for ease of combination with other services, but on the other
hand also exposes a more specialized RESTful service which allows clients to
interact with the service in a more specific way, leveraging the specific features
of the underlying platform.

References

1. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and Issues in Data Stream Systems. In Lucian
Popa, editor, Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 1–16, Madison, Wisconsin,
June 2002. ACM Press.

2. Scott Boag, Donald D. Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML
Query Language. World Wide Web Consortium, Recommendation REC-xquery-
20070123, January 2007.

3. Colm Divilly and Nikunj R. Mehta. Hierarchy Extensions to Atom Feeds.
Internet Draft draft-divilly-atompub-hierarchy-00, May 2009.

4. Roy Thomas Fielding and Richard N. Taylor. Principled Design of the
Modern Web Architecture. ACM Transactions on Internet Technology, 2(2):115–
150, May 2002.

5. Joe Gregorio and Bill de Hóra. The Atom Publishing Protocol. Internet
RFC 5023, October 2007.

6. Dominique Guinard and Vlad Trifa. Towards the Web of Things: Web
Mashups for Embedded Devices. In Proceedings of the Second Workshop

12 Erik Wilde and Alexandros Marinos

on Mashups, Enterprise Mashups and Lightweight Composition on the Web,
Madrid, Spain, April 2009.

7. Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Ac-
cessing the Deep Web. Communications of the ACM, 50(5):94–101, May 2007.

8. International Organization for Standardization. Information Technol-
ogy — Database Languages — SQL — Part 1: Framework (SQL/Framework).
ISO/IEC 9075-1:2008, January 2009.

9. Mengchi Liu and Tok Wang Ling. A Conceptual Model and Rule-Based
Query Language for HTML. World Wide Web, 1(1-2):49–77, March 2001.

10. Alexandros Marinos, Amir Razavi, Sotiris Moschoyiannis, and Paul
Krause. RETRO: A (hopefully) RESTful Transaction Model. Technical Report
CS-09-01, University of Surrey, Guildford, Surrey, August 2009.

11. Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying
the World Wide Web. International Journal on Digital Libraries, 1(1):54–67,
1997.

12. Mark Nottingham and Robert Sayre. The Atom Syndication Format. In-
ternet RFC 4287, December 2005.

13. Open Geospatial Consortium. An Introduction to GeoRSS: A Standards
Based Approach for Geo-enabling RSS feeds. OGC 06-050r3, July 2006.

14. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank Citation Ranking: Bringing Order to the Web. Technical Report
SIDL-WP-1999-0120, Stanford University, November 1999.

15. Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A
Multi-Faceted Metric for Service Design. In Quemada et al. [18], pages 911–920.

16. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web
Services vs. ”Big” Web Services: Making the Right Architectural Decision. In
Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma,
Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of the 17th
International World Wide Web Conference, pages 805–814, Beijing, China, April
2008. ACM Press.

17. Eric Prud’Hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. World Wide Web Consortium, Recommendation REC-rdf-sparql-query-
20080115, January 2008.

18. Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl,
editors. Proceedings of the 18th International World Wide Web Conference,
Madrid, Spain, April 2009. ACM Press.

19. Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. Internet RFC 3920, October 2004.

20. Erik Wilde. Putting Things to REST. Technical Report 2007-015, School of
Information, UC Berkeley, Berkeley, California, November 2007.

21. Erik Wilde. Feeds as Query Result Serializations. Technical Report 2009-030,
School of Information, UC Berkeley, Berkeley, California, April 2009.

22. Erik Wilde, Eric Kansa, and Raymond Yee. Proposed Guideline Clarifica-
tions for American Recovery and Reinvestment Act of 2009. Technical Report
2009-029, School of Information, UC Berkeley, Berkeley, California, March 2009.

23. Erik Wilde and Igor Pesenson. Feed Feeds: Managing Feeds Using Feeds.
Technical Report 2008-025, School of Information, UC Berkeley, Berkeley, Cali-
fornia, May 2008.

This work was partly supported by the (INFSO-IST) OPAALS Project, funded by
the European Commission (Project number:034824)

