
Access Control for Shared Resources

Erik Wilde and Nick Nabholz
Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology (ETH Zürich)

Abstract

Access control for shared resources is a complex and
challenging task, in particular if the access control policy
should be able to cope with different kind of sharing and
collaboration. The reason for this is that traditional ac-
cess control system often depend on administrators to set
up the foundations of the access control mechanism, in most
cases users and their group memberships. The access con-
trol model presented in this paper approaches this problem
by supporting two different kinds of groups, named groups
and resource-based groups. Using the implementation of
this model in our application allows to to support a wide
variety of sharing and collaboration types between the ap-
plication’s users.

1 Introduction

Many applications require authentication and authoriza-
tion for managing access to shared data and services (called
resources from now on). In many of these cases, it is also
desirable to be able to group individuals, and extend au-
thorization in a way that groups can be granted access to
resources. This way, groups can be made the foundation of
authorization, and while group populations may vary (with
individuals joining or leaving the group), the authorization
settings of resources do not have to be changed.

The functionality of managing users and groups always
has a common set of requirements. However, individual
applications often have different resources which should be
access controlled, and different access rights which should
be managed. This paper describes a generic architecture
and implementation for managing users, groups, and access
controlled resources.

In the resource control and group management model
presented here, groups are treated as resources, i.e. they
need authorization for determining who is permitted to add
and remove group members. Even the system is modeled as
a resource, which results in a clean and consistent design,
which can be easily extended to meet new requirements.

2 Application Scenarios

The model presented here can be used in a variety of set-
tings, but has been developed in the context of theShaRef
(Shared References)project [5], which is concentrating on
managing bibliographic metadata in a collaborative context,
and thus requires resource control and group management.
The resources in this application are so-calledbibliogra-
phies, collections of bibliographic references, which should
be usable by individual users, but also by user groups (e.g.,
a research group managing a list of related work in their
area of research).

Figure1 shows ShaRef’s data model, and it can be seen
that apart from the user and group concepts, the most im-
portant concepts are bibliographies (as described above),
databases(collections of bibliographies which share a com-
mon set of user and group information), andworkspaces
(which serve as a kind of “shopping cart” in the model,
being the interface between user interactions and the per-
sistent storage in the database’s bibliographies). Bibliogra-
phies and Workspaces containreferencesandshadows, the
latter being a special kind of reference.

In the context of this paper, the important observation
is that access control in our system is based on the level
of bibliographies and workspaces (database being the big-
ger contexts). Thus, the shared resources which have to be
managed by an access control system are bibliographies and
workspaces, while the contents of these resources can be
freely used once authorization has been granted. This scal-
ability in terms of access control make it possible to adapt
the system to specific application requirements, for exam-
ple for determining the scope of payed access to resources
in e-commerce applications.

Generally, the application area of the model presented
in this paper is any application requiring shared access to
resources, and where access should be controlled through
user identities and the users’ group memberships. The gran-
ularity of the resources and the actual rights being managed
can be adapted through the generic model presented in Sec-
tion 3. Furthermore, identification and authentication can
be handled internally or externally, so that our system can



DatabaseUserGroup

Bibliography
Workspace

as
so

ci
at

ed
w

ith

session owns

owns

membermember

Items

Reference Shadow

Items

Reference Shadow

Figure 1. ShaRef Data Model

be combined with existing authentication services, for ex-
ample for handling customers which are already managed
in a separate database.

3 Access Control Model

One of the key design goals was to keep the model as
simple as possible, so that it is easy to understand and to
apply by users, which typically are not experts in using a
collaborative system. The majority of our users are casual
users, and the model must be simple enough for them to be
easily understandable.

3.1 Users, Groups, and Resources

In our model,usersand/orgroupscan be members of
groups (cyclic structures are prohibited). The idea is that
hierarchical structures of organizations can thus be easily
reflected in the organization of the users and groups. De-
termining whether a user is authorized for some action is
thus equivalent to testing whether this user is directly or
indirectly (through group membership) authorized for this
action.

The core concept for authorization is that ofroles, a role
is defined for each resource class, and each role can be
played by any number of users and/or groups. A special
case is theadministratorrole, which must have at least one
user and/or group. Having a role is equivalent to having a
certain authorization, and the actions authorized are specific
to the concrete application and resource. Theadministrator
as a pre-defined role exists for every resource, and being an
administratorof a resource is equivalent to having the right
to add and remove users and/or groups to this resource’s
roles.

Figure2 shows the overall model. On the top is the ab-
stractmanaged resource class, defining theresource admin-

istrator role, which is inherited by all classes. Derived from
the abstract base class (arrows with straight lines) are the
system class(defining system administrators and resource
creation rights), thegroup class(a class required for all sce-
narios), and thebibliography class(which is specific for the
ShaRef scenario).

The system class is required for system adminstration
and resource creation management. Only system admin-
istrators are allowed to create users, they manage the user
objects in the sense that each user may or may not have the
right to create resources, and these creation rights can be
changed by system administrators only. Resource creation
is managed through roles, too, but these roles have built-in
semantics (resource creation, depicted by dashed arrows),
and for each resource class, there is one such role in the
system class.

The group class defines one additional list (in addition
to thegroup administrator listinherited from the managed
resource class) for a group’s members.

There is the possibility to use hierarchic roles (thin ar-
rows), which means that the individual roles are not inde-
pendent. Each role can be hierarchic (being a descendant
of another role of the same resource class) or independent,
with the following reasoning behind these two configura-
tions:

• Hierarchic Roles: In case of hierarchic roles, all en-
tries having a certain role are considered having the
dependent role, too. For example, in ShaRef, a writer
of a bibliography implicitly also is a reader (and in fact,
an administrator implicitly is a writer and thus a reader,
too). So this means for ShaRef bibliographies, all three
roles are structured hierarchically (shown by the thin
arrows in the bibliography class in Figure2).

• Independent Roles:If roles are not considered subsets,
roles are independent, which means that only entries



System Class

Managed Resource Class

Resource Administrators

Group Creators

Group Class

Group Members

Bibliography Creators

Bibliography Class

Bibliography Administrators

Bibliography Writers

General Resource and Group
Management Classes

Application-Specific Classes
(Specific ShaRef Class)

Resource CreationResource Access

Group Administrators

Bibliography Readers

System Administrators

Figure 2. Resource Control and Group Management Model

having the role explicitly are considered to have the as-
sociated access right; there is no dependency between
an independent role and other role. For example, in
ShaRef, system administrators may create groups and
bibliographies, but the group and bibliography creation
rights are independent (shown by the thin arrows in the
system class in Figure2).

In a given application scenario, developers have to de-
cide which types of resources should be access controlled.
For each of these types, a resource class has to be cre-
ated (as in the box labeled “Application-Specific Classes”
in Figure2), and for each access right, a role has to be de-
fined (either hierarchic or independent). For each of these
classes, the system class will have a correspondingcreator
role, which controls the creation of resources of this type.

3.2 Resource-based Groups

So far, roles can be assigned to users and groups, and
groups have to be created explicitly (and be given a name,
which is why they are callednamed groups). This kind
of group management works well for managing group
structures which are aligned with real-world organizational
structures, such as research groups or departments. For a
more dynamic way of managing resources, however, we
provide an alternative concept for defining groups, which
is calledresource-based groups.

While a named group is defined by an instance of the
group class (by all users and/or groups having the admin-
istrator or member role for this group), a resource-based
group is implicitly defined by any other resource. When
using a resource-based group, it is referenced through a re-

source and a set of roles, and the members of this resource-
based group are all users and/or groups having the speci-
fied role(s) on the specified resource. For example, a user
may create a new resource and specify that the new resource
can be read by all readers of another resource, and if the
other resource’s readers are being changed, this change is
reflected on the newly created resource, too.

Named groups are better suited to support organizational
structures, where groups are well-defined and change in-
frequently. Resource-based groups provide a more flexible
and dynamic way of managing resource access, with the
risk of unintentional changes being triggered by changes of
the referenced resource (this risk is increased by chains of
resource-based groups).1 It is at each user’s discretion to
decide which group concept is considered more appropriate
for a given scenario.

4 Implementation

The first step necessary for using the access control sys-
tem is successful authentication, which means that a user
has to be identified, and his identity has to be verified. Af-
ter successful authentication, the resource control service
provides all the information about permissions of individ-
ual users on resources, as well as the required management
functionality for this environment. The actual implementa-
tion of access control (i.e., the application-level semantics
of roles) is application-specific and must therefore be im-
plemented within the application.

1To eliminate the risk of “orphaned resources”, resource-based groups
may not be used within the resource administrator role.



4.1 Authentication

Authentication can be done by either using a built-in
database of users and credentials, or by accessing an ex-
ternal service for user authentication.

Using the built-in database makes it easy to use and de-
ploy the service within standalone applications. There is
an API for registering new users, so applications can im-
plement their own functionality for managing users and can
use this API for managing their user base.

Using an external authentication service is preferable
when there is an existing database of users and credentials
that should be reused by an application. This is particularly
important for implementingSingle Sign-On (SSO)applica-
tions, where users have one centrally maintained identity
which they can use to access multiple applications.

4.2 Resource Control Service

Any application that wants to use this service must regis-
ter newly created resources for access control. The creator
of this new resource gets the administrator role. This means
that this user has the permission to grant any role for this
resource to any other user or group.

It is on behalf of the application developers to define ad-
ditional roles for their resource types, and to specify what
actions are allowed or forbidden for each of these roles. The
resource control service answers the question “what are the
roles of this user for this resource?”. The enforcement of
the request’s result is application-specific and has to be im-
plemented inside the application.

4.3 Clients

The resource control service provides the necessary
functionality to implement a user or application interface
for access control and management. Application devel-
opers access the resource control service via Java RMI,
which makes is possible to deploy distributed configura-
tions, where the clients are distributed throughout a net-
work, while the access control service runs as a centralized
service..

As an existing client implementation, we provide a
Eclipse plugin for the management of groups and users. The
plugin is a user interface for the resource control service. It
displays information about users, groups and application-
specific resources. A user of this plugin can set the required
roles for his resources. He can assign a role to any users
and/or groups within the system. If the user has the per-
mission to create groups or other resources, this task is also
supported.

5 Discussion

Our access control model is aDiscretionary Access Con-
trol (DAC) model. Individual users may grant and revoke
privileges on their resources, which is pure DAC, but our
model of groups and the system as resources as well is a
particularly powerful variation of the general DAC model.
This model allows a user to setup collaboration easily.

5.1 Related Work

The access control model presented here is based on ex-
isting access control models. They are well known and de-
scribed by FERRAIOLO et al. [2], the two most important
models are the following:

• Discretionary Access Control (DAC)permits granting
and revoking of access privileges at the discretion of
the individual user. The user may grant privileges for
the resources under his control to other users without
intervention of a system administrator.

• Role Based Access Control (RBAC)bases access con-
trol on the function a user has in an organization. A
role can be thought of as a set of permissions within
the context of a organization. A user can not pass ac-
cess permissions to other users at his discretion.

Roles are a very powerful concept described in detail by
EDWARDS [1]. However, collaborative work (as in our ap-
plication scenario) often takes place in groups which are not
reflected in the organization’s structure. Therefore, RBAC
often has difficulties to support the requirements of collab-
oration if the collaboration and sharing of resources is not
tied to very strict rules and workflows.

The idea of distributed administration of access rights,
which is behind DAC models, supports the requirements of
collaboration much better. Many shortcomings of the DAC
model which are mentioned in the description of the access
matrix model (another name for DAC) in TOLONE et al. [4]
can be avoided by our model by the properties described in
the following section.

5.2 Contributions

While the basic system model is that of a DAC model,
there are some special facets of our model which are not
found in other DAC systems. In particular, the model has
been designed to be as consistent as possible, which is re-
flected in the fact that groups and the system are modeled
as resources as well.

Groups are modeled as resources (a built-in resource
class). A group is controlled by normal users having the



administrator role for the group. More traditional DAC sys-
tems treat groups as a totally different kind of resource, and
this more limited model can be easily mapped to our model
by only using groups where the system administrators are
also group administrators.

The system is modeled as a resource (a built-in resource
class), and there is exactly one instance of this class at any
given time. The administrators of the system resource con-
trols all resources. System administrators may create any
resource and remove any resource from the system. But a
system administrator does not necessarily have any of the
resource specific roles (depending on whether hierarchic or
independent roles are being used). To keep the design con-
sistent, the system resource has a role for every type of re-
source, controlling resource creation. The system adminis-
trator may assign these roles to any user or group.

As the final facet we introduce resource-based groups.
Users with a specific role on a resource can be regarded as a
group of users. This implicit group of users may be assigned
a role for any other resource.

5.3 Future Work

This implementation of resource control leaves the en-
forcement of access control to the application developers.
Unfortunately the enforcement of access control goes across
many of the modules of a application, which makes it hard
to implement and maintain.Aspect Oriented Programming
(AOP) could help to handle this in a better way, providing
the integration of the access control and management func-
tionality as an aspect in an AOP environment.

While so far we have implemented our model in Java as
an RMI-based service, it would be interesting to provide an
alternative interface to the service based on theJava Authen-
tication and Authorization Service (JAAS)[3]. JAAS is the
Java standard API for authenticating users and for assign-
ing privileges, and providing an JAAS-compliant interface
to our service would make it possible to integrate it into ex-
isting applications which are using JAAS for authentication
and access control.

6 Conclusions

The DAC model, which permits granting and revoking
of permissions at the discretion of a user, is a very interest-
ing model for the management of permissions in collabora-
tive environments. We think the proposed extensions with
groups of users and roles can make this model interesting
for resource sharing and collaboration in large organiza-
tions.

References

[1] W. K. Edwards. Policies and roles in collaborative applica-
tions. InProceedings of the ACM 1996 Conference on Com-
puter Supported Cooperative Work, pages 11–20, Boston,
Massachusetts, November 1996. ACM Press.

[2] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.Role-
Based Access Control. Artech House, Norwood, Mas-
sachusetts, April 2003.

[3] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers.
User authentication and authorization in the java platform. In
Proceedings of the 15th Annual Computer Security Applica-
tions Conference, pages 285–290, Scottsdale, Arizona, De-
cember 1999. IEEE Computer Society Press.

[4] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control
in collaborative systems.ACM Computing Surveys, 37(1):29–
41, March 2005.

[5] E. Wilde, S. Anand, and P. Zimmermann. Management and
sharing of bibliographies. In A. Rauber, S. Christodoulakis,
and A. Min Tjoa, editors,Proceedings of the 9th European
Conference on Digital Libraries, Lecture Notes in Computer
Science, pages 479–480, Vienna, Austria, September 2005.
Springer-Verlag.


	Introduction
	Application Scenarios
	Access Control Model
	Users, Groups, and Resources
	Resource-based Groups

	Implementation
	Authentication
	Resource Control Service
	Clients

	Discussion
	Related Work
	Contributions
	Future Work

	Conclusions

