
Augmenting XHTML for Help and Documentation

Erik Wilde
Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology (ETH Zürich)

Abstract

Providing users with help and other documentation is es-
sential for any software targeted at end users. Authoring
help and documentation in a platform-independent way is
hard, because different help systems have different conven-
tions for structuring and organizing the documents. The
Help System Generator (HSG)presented in this paper pro-
vides an easy and platform-independent way of preparing
and publishing help and documentation. Using HSG, soft-
ware creators can easily author, reuse, and publish help and
documentation for different platforms.

1 Introduction

The Web as an ubiquitous infrastructure makes it pos-
sible to implement an increasing number of applications
as client/server-based implementations. However, it may
be required to have online as well as standalone versions
of an applications, which can then be used when working
over the Web or being offline. Toolkits are becoming avail-
able which support the development of this kind of soft-
ware [10]. If software is developed this way, help and docu-
mentation should also be available online as well as offline.

Creating help and documentation is a complex task,
which often requires the collaboration of different contrib-
utors, which means that some form of coordination is re-
quired. As an added complication, it is increasingly re-
quired to create this documentation in a way which supports
different publication channels, for example as a Web-based
help system, as an integrated help system of the target plat-
form, or as printed publication.

While the majority of help and documentation formats
today are HTML-based (because HTML browsers are be-
coming a commodity in almost all computing environ-
ments), the exact way of packaging the HTML files and
describing their dependencies differs between different for-
mats. The most common formats on the operating system
level areMicrosoft HTML HelpandApple Help(Linux does
not have such a standard help format). On the software plat-

form level, the Java platform has two different formats, one
is JavaHelp[9], and the other is theEclipse Help System[6]
for Eclipse-based applications.

If there is no help system available for an application
or service being deployed, it may make sense to use static
HTML pages, which can be made available on any Web
server or even be browsed locally with a Web browser.

In this paper, we describe a system which solves the
problem of different publication channels by using a com-
monly known document format (HTML) and augmenting
it with a small set of documentation-specific features. The
main idea behind this design is to not reinvent the wheel
by designing a completely new documentation format, but
to reuse the existing and widely known HTML format and
only extend it where it is required. The goal of this de-
sign is to make it easy for documentation writers to cre-
ate documentation, because they can leverage their existing
HTML knowledge and only have to learn a very small set
of documentation-specific elements.

The system described in this paper is used for the
help and system documentation of theShared References
(ShaRef)project, where HTML and Eclipse Help documen-
tations are generated from the source documents. The rea-
son for this is that ShaRef provides a Web-based client as
well as an Eclipse client, and for both client implementa-
tions the same help and system documentation should be
available.

2 Concept and Design

The concept of theHelp System Generator (HSG)is to
use XHTML [11] (the XML-compliant version of HTML)
as the basic documentation format, and then use XML
Namespaces [1] to augment the XHTML structures with
additional elements required for the documentation (these
elements are described in Section2.2). Because different
projects may have different documentation requirements,
introducing new elements is easy, as described in Sec-
tion 2.3.

In addition to the documents, there must be aTable of
Contents (ToC), describing in which way the documents

must be put together for the documentation. Starting from
the documents (augmented XHTML) and the ToC (a simple
XML document), different output formats can be created.
For example, all help systems mentioned above need some
ToC description as input, but they all require slightly dif-
ferent formats, which can be automatically created from the
original ToC.

All help systems mentioned above provide ex-
pand/collapse features for the ToC. According to CHIMERA

and SHNEIDERMAN [3], ToC views of structured content
are easier to use if they provide expand/collapse fea-
tures. For this reason, even the HTML version is using a
JavaScript-based expand/collapse presentation of the ToC.

2.1 XHTML Restrictions

In principle, HSG does not impose any limitations on
how to use XHTML, but in practice, there are two rea-
sons why restrictions on the XHTML should be imposed in
many application scenarios. The first reason is that some
XHTML features may make it impossible to create self-
contained documentation (a typical example are links to re-
sources which are not part of the documentation itself, for
example links to images on the Web). The second reason
is that it often is a goal to have the documentation follow a
number of guidelines, so that the final version has a consis-
tent design.

In its basic setup, HSG issues warnings for elements
which may conflict with the first reason above (links to
external resources), so that users can check whether these
links should be removed. For the layout consistency of
the documentation it is impossible to define general rules,
which is why they are not part of the basic setup. Adding
additional rules, however, is part of HSG’s principal design
(as describe in Section4.1), and adding very basic rules
such as disallowing (or silently removing) allclass and/or
style attributes is easy to implement in HSG.

The most basic limitations are that a<head> element
is not allowed (it will be generated if the target format is
HTML-based), and that links to external resources (mainly
<a> and) are deprecated (it still may make sense
to include a link to a Web-based FAQ or discussion forum,
but this link will only work if the resulting documentation
is used when being online).

For further issues regarding the question of consistent
document design and related topics, Section4.1 describes
more methods how documents can be validated before pro-
cessing.

2.2 XHTML Extensions

In principle, HSG pages are XHTML pages, which
means they can be imported from existing (X)HTML docu-

mentation, authored using standard HTML authoring tools,
or created by anybody having HTML knowledge. HSG de-
fines additional elements, which augment XHTML in a way
which is better suited towards creating help and documen-
tation.

The following elements are supported in our proto-
type. It is important to keep in mind that introduc-
ing new elements (Section2.3) is easy and an impor-
tant aspect of HSG’s design. Figure1 shows exam-
ples for all elements described (all elements from the
http://dret.net/xmlns/hsg namespace are HSG
elements).

• Cross-References:References between documents are
created using a custom element (which also supports
fragment identifiers). The reason why XHTML’s<a>
element is not used is that the target names must be
used for calculating the actual links for a given out-
put format (for example, adding “.html ” when creat-
ing HTML output). HSG provides a simple 1:1 model
of embedded links because this is easy to understand
with existing HTML knowledge.1 The text of a cross-
reference is generated from the target’s title, which
means that the link text and the target title text will
automatically match.

• Images: Images also need special treatment, because
they refer to external resources, too. Therefore, im-
ages must be included using a custom element, which
makes it possible to collect information about images,
create an image repository, and in the final representa-
tion generate links pointing to that repository.

• Inclusions:HTML does not support inclusion,2 but for
modularizing the documentation, inclusion is a very
useful functionality. Inclusions can be on the docu-
ment level (which means that XHTML/HSG fragments
can be reused), or on the text level (including docu-
ments as pure text, for example for listings).

• Index Entries: Some of the target formats support
searching, but for the others, having an index is es-
sential for making the information easier accessible.
Therefore, index terms can be marked up in the docu-
mentation, and this will either be mapped to a special
index format for the target format (for example, Java-
Help supports indices), or to a generated index docu-
ment in the target format (for example, Eclipse Help
does not support indices).

1If required, a more powerful link model such as XLink [5] could be
adopted, but then mapping it to HTML and other formats would become
considerably harder.

2Technically, HTML (or rather SGML/XML) supports inclusion
through the internal subset and external entities, but this is hardly used
and only poorly supported by today’s browsers.

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:doc="http:/dret.net/xmlns/hsg"><body>
<h1>Sample Document</h1>
<p>There must be one <code>h1</code> element giving the title. The following list describes all

features of the current HSG documentation implementation:</p>

Here is a link to the complete documentation of HSG itself, demonstrating
<code><doc:index>doc:a</doc:index></code>: <doc:a href="hsg-documentation"/>.

Images may be included with the <code><doc:index>doc:img</doc:index></code> element:
<doc:img src="vxhtml10.gif" alt="Valid XHTML Logo"/>.

<p>This is the document source (demonstrating the literal inclusion of text with

<code><<doc:index>doc:include</doc:index> mode="text"></code></doc:a>):</p>
<pre><doc:include href="sharefdoc-sample.xml" mode="text"/></pre>

</body></html>

Figure 1. Example HSG Document (XHTML with additional HSG Elements)

2.3 Adding Extensions

The basic set of HSG elements is rather small, but it al-
ready supports the basic requirements for creating help and
documentation. If additional information needs to be in-
cluded in the documents, new elements may be introduced,
which can then be used to implement new functionality.

For every extension, it must be defined how it has to be
used, and how it is mapped to the required output formats.
For example, an extension to add margin notes for printed
documentation may be added, but since margin notes are not
that well-known in HTML-based formats, it may be decided
to simply ignore these notes for HTML-based outputs.

HSG is currently implemented in XSLT, which is is ide-
ally suited to support the addition of extensions. Figure2
shows how document processing is implemented in HSG
and can be easily extended, and this is described in the over-
all context of the HSG implementation in the following sec-
tion.

3 System Architecture

The XML documents consisting of XHTML and HSG
extensions are the main source of documentation for the
generated output. In addition, images and included text files
are also part of the documentation. These three types of
documents (XML, images, text) are collected in different
repositories, and since they are individual resources, they
can be managed using a standard access and version con-
trol system, for example CVS or Subversion. Working on
the documentation then is done by a standard workflow of
checking out documents, updating them, and then commit-
ting them (Subversion is the best choice here because it sup-
ports atomic commits for multiple resources).

When documentation is generated from the resources,
the XML documents are processed, it is checked that the
referenced images and text files actually exist, and then the
resulting documentation is written to a separate location.

While the included text documents have been integrated
into the generated documentation (and thus need not be
shipped as individual resources), the images are still refer-
enced in most output formats (most notably in any HTML-
based format) and thus have to be included in the generated
documentation as individual resources.

As a result of this architecture, integrating HSG-based
documentation into existing access and version control sys-
tems can be done easily, and working on the documentation
can be done consistently with working on other resources
(such as program code). Generating the documentation can
be included as one step in building a release, but also should
be done periodically to check the documentation files for er-
rors and inconsistencies.

4 Implementation

XHTML as the foundation of HSG has been chosen be-
cause it can be processed using XML technologies, in par-
ticular XML Transformations (XSLT), which for HSG is
used in its most recent version XSLT 2.0 [8]. Generally,
XML is the foundation for a large variety of document-
oriented applications, and using an XML-based format is
the best way to keep the system as open as possible.

When switching to HSG, it is possible to migrate existing
documents. If they use some kind of XML-based vocabu-
lary, they can be mapped to XHTML. If they use HTML
(i.e., they are not XML), tools likeHTML Tidycan be used
to clean up the HTML code and transform it into XHTML.

4.1 Validation

As a first step before transforming document to a tar-
get format, they are validated. Validation in this case does
not mean validation against a DTD or an XML Schema, it
simply refers to the general process of testing whether the
documents conform to a given set of constraints.

As a first step, the documents must adhere to the
XHTML restrictions described in Section2.1, and all HSG
elements found in the documents must be well-known and
supported. Also, any rules for these elements must be ad-
hered to, as an example it is required that a cross-reference
points to an existing document. These checks are necessary
to make sure that the set of documents can be consistently
processed.

As a second step, additional constraints may be enforced.
These can either be formulated in additional XSLT code, or
it is possible to use a higher-level language, such asSchema-
tron [7], which would be well-suited to define additional
constraints. An example for a complete set of constraints
are theWeb Content Accessibility Guidelines (WCAG)[4],
which are increasingly asked for when creating documenta-
tion. It should be kept in mind, however, that WCAG cannot
be checked in a fully automated process, but at least parts
of the checking can be automated.

4.2 Transformation

After validation of the input documents, they are trans-
formed into the required output format(s). XML Name-
spaces and XSLT provide excellent support for this kind of
processing, and Figure2 shows the core fragment of the
transformation code.

In this example, it is shown how XHTML elements are
simply copied (this is the code for the HTML output for-
mat), while unknown HSG elements trigger an error mes-
sage and are ignored. HSG’s output formats are mapped
to XSLT modes, which provide a natural way for dealing
with different ways of treating the same kind of nodes. The
code for processing the supported elements described in
Section2.2 is not shown in this example, but it follows the
pattern of the template processing unknown HSG elements.

Since XSLT 2.0 has powerful new functions for access-
ing input files (in particular, any kind of text file can be
included and even processed with tokenization functions),
the transformation step is not limited to XML resources
only, but can include any kind of resource which is avail-
able through XPath’s and XSLT’s functions for interacting
with the execution environment.

For the HSG elements described in Section2.2, there are
templates which implement the mapping of these elements
to the supported output formats. For any additional HSG
elements (as described in Section2.3), templates have to be
implemented which transform these elements. Because of
XSLT’s template matching algorithm, this kind of behavior
can be very elegantly implemented in imported stylesheets,
without the need to touch any of the original HSG code.

The only problem discovered with XSLT 2.0 so far is that
there is no function to return the current mode, so there is no
easy way of implementing templates for two modes which

<xsl:template match="html:*" mode="html">
<xsl:copy>

<xsl:apply-templates select="node() | @*"
mode="html"/>

</xsl:copy>
</xsl:template>
<xsl:template match="@*" mode="html">

<xsl:copy/>
</xsl:template>
<xsl:template match="doc:*" mode="#all">

<xsl:message>unknown element</xsl:message>
</xsl:template>

Figure 2. XSLT Code for Processing XHTML
and HSG

only in few places implement different behavior depending
on the current mode.

5 Discussion

The system presented in this paper has been designed
and implemented because of the documentation needs of a
concrete project. The design is generic, so that it can be
used for a variety of help and documentation applications.
The current design and implementation supports a small set
of documentation-related elements, but because the design
is extensible and extensions can be implemented using a
widely known language, it is easy to adapt the system to
new requirements.

5.1 Related Work

There are many commercial products for the creation of
concrete output formats for various help systems. Many of
these products also support printed documentation, which
HSG only addresses as future work (Section5.3). The lim-
itations of many products are that they are not portable
across development platforms, are not extensible with ad-
ditional documentation elements, and are not extensible
with project-specific documentation constraints for produc-
ing validated documentation.

From the open source software side, the most popular
projects areTexinfo[2] andDocBook[12]. Texinfo uses a
text-based input format (no markup language) and C pro-
grams for converting the text-based input into a number
of different output formats, most notably emacs info files,
HTML, and TEX for printing documentation.

DocBook is an XML-based documentation format.
There are stylesheets available for producing different help
system formats from DocBook documents. DocBook is a
rather complex format, and while many software develop-
ers have at least a working knowledge of HTML, the same
cannot be said about DocBook.

5.2 Contributions

The major features of HSG are its extensibility in terms
of additional documentation elements, and in terms of doc-
ument validation. While these features require a certain
amount of coding, they fit well into the design and imple-
mentation of HSG, and are rather easy to implement for ex-
perienced XSLT developers.

The advantage of HSG over Texinfo is that HSG is built
on existing standards such as HTML, XML Namespaces,
and XSLT, which makes it easy to extend HSG. The advan-
tage of HSG over DocBook is its much simpler and widely
known document model, which is only extended with a few
documentation-specific elements.

5.3 Future Work

While HSG currently only targets HTML-based output
formats, producing printed documentation could also be im-
plemented. Using XSLT for transforming the documents to
XSL-FO and then produce PDF would be the most obvious
way, and there are a number of existing implementations for
this kind of document preparation.

Creating documentation currently is done with no spe-
cific editing tool or support (we do use an XML editor,
though), and while basic (X)HTML editors could be used,
it would probably make more sense to use an extensible
XHTML or XML editor, which could be extended to pro-
vide editing support for the HSG documentation elements
as well.

6 Conclusions

The system presented in this paper can be used to pro-
duce help and documentation based on XHTML and a small
number of additional documentation elements. Using this
system, it is easy to create platform-independent documen-
tation, which can then be used to produce different output
formats for existing help systems.

References

[1] T. Bray, D. Hollander, and A. Layman. Namespaces in xml.
World Wide Web Consortium, Recommendation REC-xml-
names-19990114, January 1999.

[2] R. J. Chassell and R. M. Stallman.Texinfo: The GNU Doc-
umentation Format. GNU Press, Boston, Massachusetts,
September 1999.

[3] R. Chimera and B. Shneiderman. An exploratory evalua-
tion of three interfaces for browsing large hierarchical ta-
bles of contents.ACM Transactions on Information Systems,
12(4):383–406, October 1994.

[4] W. Chisholm, G. Vanderheiden, and I. Jacobs. Web con-
tent accessibility guidelines 1.0. World Wide Web Consor-
tium, Recommendation WAI-WEBCONTENT-19990505,
May 1999.

[5] S. J. DeRose, E. Maler, and D. Orchard. Xml linking lan-
guage (xlink) version 1.0. World Wide Web Consortium,
Recommendation REC-xlink-20010627, June 2001.

[6] K. L. Halsted and J. H. Roberts. Eclipse help system: An
open source user assistance offering. In K. Haramundanis
and M. Priestley, editors,Proceedings of the 20th Annual In-
ternational Conference on Computer Documentation, pages
49–59, Toronto, Canada, October 2002. ACM Press.

[7] International Organization for Standardization. Information
technology — document schema definition languages (dsdl)
— part 3: Rule-based validation — schematron. ISO/IEC
19757-3, February 2005.

[8] M. Kay. Xsl transformations (xslt) version 2.0. World Wide
Web Consortium, Working Draft WD-xslt20-20050915,
September 2005.

[9] K. Lewis. Creating Effective JavaHelp. O’Reilly & Asso-
ciates, Sebastopol, California, June 2000.

[10] R. Merrick, B. Wood, and W. Krebs. Abstract user inter-
face markup language. In K. Luyten, M. Abrams, J. Vander-
donckt, and Q. Limbourg, editors,Proceedings of the Work-
shop on Developing User Interfaces with XML: Advances on
User Interface Description Languages, Gallipoli, Italy, May
2004.

[11] S. Pemberton. Xhtml 1.0: The extensible hypertext markup
language (second edition). World Wide Web Consortium,
Recommendation REC-xhtml1-20020801, August 2002.

[12] N. Walsh and L. Muellner.DocBook: The Definitive Guide.
O’Reilly & Associates, Sebastopol, California, July 1999.

	Introduction
	Concept and Design
	XHTML Restrictions
	XHTML Extensions
	Adding Extensions

	System Architecture
	Implementation
	Validation
	Transformation

	Discussion
	Related Work
	Contributions
	Future Work

	Conclusions

