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Abstract. Linked Data has become a popular term and method of how
to expose structured data on the Web. There currently are two school
of thought when it comes to defining what Linked Data actually is, with
one school of thought defining it more narrowly as a set of principles
describing of how to publish data based on Semantic Web technologies,
whereas the other school more generally defines it as any form of prop-
erly linked data that follows the Representational State Transfer (REST)
architectural style of the Web. In this paper, we describe and compare
these two schools of thoughts with a particular emphasis on how well
they support principles of service orientation.

1 Introduction

In the recent past, the term of Linked Data has become a popular meme for refer-
ring to approaches which are publishing structured data on the Web. However,
the exact meaning of that term has been contentious, which is not an unusual
thing to happen to terms which attract a certain attention and are not rigidly
defined by any specific standard or product. This paper is an attempt to explore,
explain, and clarify the major world views in this area, and more importantly,
to investigate how well they work under the perspective of service orientation.

Unfortunately, the term service orientation itself is not all that well-defined,
which means that it takes a little bit of explanation in itself. For the purpose
of this paper, we refer to service orientation as an approach which allows the
providers or information-intensive services to expose services which can be eas-
ily used, reused, and recombined using Web technologies. One of the main goals
of service orientation should be to achieve loose coupling [24] between services,
and between service providers and service consumers, so that the service land-
scape exposed by service providers, and the service landscape used by service
consumers, are as agile and as easy to repurpose as possible.

For the purpose of this paper, the main property of service orientation is
that it is on a higher level of abstraction and functionality than structured
data. In order to implement service-oriented architectures, it is necessary to have
some representation for the data that is exchanged between service providers
and consumers, but the exact nature of that data, in particular the specific
structured data standard used to represent that data, is secondary. Of course,
in order to make services easily usable and easily mashable it is advantageous
to use standardized and well-established structured data standards, but this is



only one of the facets of service orientation. Another important facet is that the
exact patterns in which data is exchanged is essential to service design as well,
and there are several popular design patterns such as downloads, incremental
data transfers, pull-based data feeds, and push-based architectures with various
subscription and notification mechanisms using light or fat ping approaches.

The goal of this paper is to provide an overview and a qualitative comparison
between the two dominant “world views” of linked data that are currently in use.
One of the world views is a more constrained one which is based on Semantic
Web technologies and architecture, and this approach is described in Section 2.
The other world view is less constrained in terms of technologies and is based
on Web technologies and architecture, this approach is described in Section 3.
Recently, a third world view has been proposed, seeking the middle ground by not
rigidly prescribing the RDF metamodel1 of the Semantic Web world view, but
still mandating that the metamodel used for structured data should be based on
triples. This third world view so far has not gained a lot of momentum, though,
probably caused by a lack of available candidates for a metamodel which is not
RDF, but still based on triples.

The main reason for comparing the different approaches for linked data is
that in the end, they are just implementation variants to achieve non-technical
goals, which in many cases revolve around ideas of accessibility and usability (of
data, and not of user interfaces), openness (non-proprietary ways of accessing
and representing data), extensibility (the ability of the environment to adapt to
unforeseen needs and use cases), and transparency (giving users the ability to
understand where data originates, and easier ways to interact with a larger set
of back-end data and service providers). Looking at service orientation is one
way of comparing different approaches, so that from the business perspective it
becomes easier to decide which technical approach best fits the requirements of
the business goals.

2 Narrow Linked Data World View

The Narrow Linked Data World View is based on the approach of the Seman-
tic Web [6], most importantly mandating the used of Semantic Web standards
for structured data models and access. The most important standards in this
space are the Resource Description Framework (RDF) [19] as the metamodel for
any data being published on the Semantic Web, and SPARQL [27] as the query
language for extracting subgraphs from large RDF graphs. While the original Se-
mantic Web approach focused mainly on the core technologies, the term “linked
data” emerged in conjunction with usage patterns around those technologies,

1 In this paper, the term metamodel refers to the model of a model language, i.e. it
is the foundation that is provided by a modeling language for building application-
specific models. For example, the RDF metamodel is defined by RDF Concepts and
Abstract Syntax [19], whereas the (most popular) XML metamodel is defined by the
XQuery 1.0 and XPath 2.0 Data Model (XDM) [4].



and one of the important sources being cited frequently in this context is the
Linked Data design note,2 which defines the following rules:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
4. Include links to other URIs, so that they can discover more things.

This set of rules can be regarded as repeating the pattern that has made the
HTML Web successful: Use URIs for Web pages, use HTTP URIs so that people
can point their browser at Web pages, make information available in HTML so
that a standard browser can render the Web page, and include links to more
pages so that people can click on links and follow them to retrieve even more Web
pages. Because this approach focuses on the utility of a single metamodel that is
consistently used by all information providers, and the utility of a standardized
query language for providers of large datasets, for the remainder of this paper
we refer to this approach as Homogeneous Linked Data (HoLD).

The most important implications of the HoLD approach are that it fixes two
design options that are left open by the Web itself: It mandates the use of HTTP
URIs so that the identities of anything identified can also be used as a way to
access it, and it mandates the use of RDF as the metamodel so any structured
information made available at those HTTP URIs can be expected to be in a
format that is prescribed in advance, instead of being discovered at runtime.

One of the important value propositions of HoLD is that data harvesting
and/or aggregation becomes relatively easy because the two most important
tasks (how to get access to data about an identified entity, and what to expect
when accessing that data) are backed by the constraints defined by this approach.
Since RDF is a metamodel with a small unit of atomicity (everything is based
on triples, and there is no bigger unit of granularity, such as a concept of a
“document,” in RDF’s metamodel), there is little built-in “bias” in RDF when it
comes to mapping existing non-RDF data models to RDF. As discussed in more
detail in Section 4, this can be a boon or a bane, depending on the data models
in question and the requirements of data publishers and users, but regardless of
these individual “data model usability” issues, the overall integrative qualities
of the HoLD approach are largely undisputed.

3 Wide Linked Data World View

The Wide Linked Data World View is based on general principles of the Ar-
chitecture of the World Wilde Web [18], and more specifically, on the Repre-
sentational State Transfer (REST) [13] architectural style underlying the Web.
Whereas HoLD is promoting a specific set of technology choices, this second
view is more agnostic in terms of technologies and is operating on the layer of
2 http://www.w3.org/DesignIssues/LinkedData.html
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architectural styles, which are design patterns for architectures. In this wider
view, the main constraints are derived from the REST architectural style, which
underlies the Web and more specifically, the core Web technologies. The REST
constraints can be summarized as follows:

1. Resource Identification: Anything that should be available for interactions
should have an identifier.

2. Uniform Interface: Interactions with identified things should be based on a
uniform interface, so that anything that is identified is readily available for
interactions. Different identification schemes can have different interfaces,
and not all identified things have to respond to all interactions defined by
their uniform interface.

3. Self-Describing Messages: Interactions should be based on exchanges of mes-
sages (or documents) which are labeled with their type.3

4. Hypermedia Driving Application State: Messages should be based on data
formats that may contain links (in most cases these are typed links), and
interactions with RESTful services essentially means following those links
according to the goals of the service consumer, and the semantics of the link
types.

5. Stateless Interactions: The uniform interface should be usable in a way that
interactions are independent of each other and only rely on either client state
or resource state. This decouples interactions and allows clients and servers
to be more independent of each other (servers do not need to remember
clients, and clients can take advantage of scalability optimizations such as
caching and replication).

Whereas HoLD to a large part reflects the specific technologies of the human-
oriented Web, the wide view reflects the architectural style of the Web and its
openness to new technologies, where identification is done by Uniform Resource
Identifier (URI) [5] but allows a multitude of identification schemes to co-exist
and new ones to be invented, where most of the interactions are based on the uni-
form interface of Hypertext Transfer Protocol (HTTP) [12], but other protocols
can be used as well, and where structured data standards such as HTML [28],
XML [7] or JSON [11] can be used, but new ones can be invented, as long
as they are registered and subsequently identified according to the constraint
of self-describing messages. Since this wider view thus allows a more open and
evolving universe of concrete technologies, it will be referred to as Heterogeneous
Linked Data (HeLD) for the rest of this paper.

In the same sense as HoLD is established as a set of constraints and patterns
for publishing linked data using the Semantic Web’s set of technologies, it is

3 For clarification: REST uses the term “self-describing” in a considerably weaker form
than this term is being used in more semantics-oriented research communities. “Self-
describing” simply means that the type of the message can be inferred by looking at
the message; it does not mean that any higher-level semantics are necessarily made
available through advanced semantic descriptions.



possible to come up with some patterns and established best practices for pub-
lishing linked data according to HeLD approach. Since this approach is based
in Web architecture itself, it can been dubbed the Plain Web [31], which is a
general attempt to use established Web technologies instead of building entirely
new stacks of technology on top of the Web, essentially treating the Web as a
transport infrastructure instead of the information system it is.

Plain Web principles and HeLD results in approaches which can also be called
Lightweight Linked Data [32], using established core Web technologies such as
Atom [22] and the Atom Publishing Protocol (AtomPub) [15]. One of the main
motivations of this approach is that HeLD data can be processed using basic Web
technology toolsets (instead of the new toolset required for handling HoLD).

While the basic approach of using Atom and XML for exposing services and
representing data might seem limiting, it is important to notice that because of
the reliance of established and widely-used Web technologies, HoLD can benefit
from developments in that rapidly developing space. One example is PubSub-
Hubbub (PuSH), a protocol that is based on Atom’s model of exposing services
via feeds, but that extends Atom’s pull mechanics with a Publish/Subscribe
(Pub/Sub) mechanism that can be used to implement push mechanics (this is
described in more detail in Section 5).

4 Data Model Issues

One of the most striking differences between the two approaches is the fact that
HoLD has a fixed metamodel, whereas in HeLD there is no fixed metamodel, and
as long as the representation is properly labeled with its type (self-describing)
and contains links (hypermedia), it can be used in a HeLD scenario. From the
service point of view, this can be both good and bad. It can be good because
it allows services to expose linked data in metamodels that fit their needs, and
may be a good fit for the data model they are using (Section 4.1 contains a more
in-depth discussion). It can be bad, because it means that service consumers
may have to deal with a variety of metamodels, and this requires a variety of
toolsets and may make it hard to combine data from different sources.

One of the interesting observations in this area is that the degree of free-
dom allowed by HeLD allows an “evolution” of metamodels used by services. As
a popular example, for a while many Web-based services published structured
data in XML, which was the first established Web-wide metamodel for struc-
tured data, and was reasonably easy to process in many client-side environments.
However, because the majority of service consumers were using JavaScript (and
processing XML in JavaScript involved some extra steps and created somehow
awkward data structures), many services started providing the data in JSON,
an alternative representation. JSON is a bit more limited than XML in its meta-
model, but most XML models can be mapped to JSON in a fairly straightforward
way. Because many developers preferred JSON’s more straightforward mapping
of data structures into programming language abstractions, JSON has now re-
placed XML in popularity for many Web-based services. This evolution has not



changed anything about the data being exchanged and the way how it is linked
and used, but it has allowed developers to move to a metamodel that better fits
their needs.

4.1 Metamodel Bias

The example of XML and JSON highlights the fact that in many cases (at least
in reasonably simple cases), data models can be mapped between metamodels.
However, there are also many examples where data models, and especially more
sophisticated data models, gain a lot of their expressiveness and convenience
from the underlying metamodel. A good example for this are markup languages
such as SGML or XML, which are metamodels specifically designed for rep-
resenting human-readable documents. Many document types can be expressed
rather conveniently in these metamodels, because of the specific design bias of
the metamodel.

Metamodel bias is important in many scenarios where the data is non-trivial
in its internal structure, and where there’s a certain “natural order” to data, such
as in documents which often are quite naturally a sequence of a variety of content
objects. Metamodel bias has two main impacts: If there is a good match between
a metamodel and a data model, then defining the model and representing and
managing data with it are made easier by the metamodel’s properties, and maybe
the technologies and toolsets that have evolved around that metamodel. If there
is a bad match between a metamodel and a data model, then defining the model
becomes awkward, and representing and managing data with it become tasks
where technologies and tools often feel like they work against the developer.

Metamodels can be roughly classified into three classes (without making any
attempt to create a precise classification scheme), which at least for the purpose
of a rough classification are sufficient:

– Hierarchical: In this case, models are always a Directed Acyclic Graph (DAG),
and sometimes they may be trees (having only one root node), sometimes
they are allowed to have multiple root nodes. Another possible distinction is
whether models can use a built-in ordering, or wether there is no ordering of
nodes in the graph. Examples for hierarchical models are IBM’s Information
Management System (IMS) for a rather old model, and more recently the
Extensible Markup Language (XML).

– Linked Tables: Instead of having the inherently hierarchical structure of trees
or other kinds of DAGs, the model of linked tables (as formalized by rela-
tional algebra) is less concerned with one predefined structure for a model
instance, and instead is based on relations and operators on those relations.
The most prominent example of this metamodel is the relational model in-
troduced by Codd [10], which nowadays has its most popular representation
in the Structured Query Language (SQL).

– Generalized Graphs: The two previously discussed metamodels have a struc-
tural bias, for the hierarchical model this is some variation of DAG, and for
the linked table model the bias are relations (i.e., connected n-tuples). The



third approach to metamodel structure is to try to avoid as much bias as
possible, and just use generalized graphs. RDF can be seen as such a meta-
model, where each triple represents an edge (the predicate) connecting two
nodes (the subject and the object).

This categorization of metamodel structures is rough and only an approxi-
mation, but it does illustrate that various modeling languages may be based on
different classes of metamodel structures, and based on this bias (and on the un-
derlying use cases and derived technologies and tools), they provide differently
specialized environments for certain classes of applications. The most important
thing to realize is that this specialization is both a constraint in terms of these
environment working better for some classes of problems than for others, and an
opportunity for optimization, because it is possible to develop more effective and
more efficient solutions for those problems that do fit the environments’ bias.

As an example, while an ordered tree model (a DAG-based model with ad-
ditional constraints) such as XML can feel like a good fit and almost natural
for scenarios involving structured text, its built-in bias can become inconvenient
and hard to adjust to when the scenarios become more advanced and include
concepts such as overlapping or concurrent markup, which cannot be easily rep-
resented in XML-based data models. However, for the majority of document
processing environments, tree-based models have proven to be the most con-
venient foundations, and metamodels such as SGML and XML and associated
processing technologies and tools have produced an environment with a good
mix of built-in bias, and freedom for customization and specialization.

In terms of comparing the two linked data approaches, HeLD allows data to
use any media type as long as it is properly declared, and thus services are free
to use models that fit their needs. HoLD, on the other hand, prescribes RDF’s
generalized graph as the only acceptable metamodel and thus does not introduce
any particular structural bias (DAGs and relations have considerably more of
a structural bias to them), but on the other hand also does not allow services
to use the more biased metamodels if they would fit their needs. Many popular
services prefer exposing XML or JSON over exposing RDF, because the installed
base of both tools and developers is much bigger.

As a side note, it is interesting to see that recently, the W3C has started work
on a standardized mapping of relational models to RDF models [26], recognizing
the fact that a lot of data today is managed in relational systems. However, since
this mapping is intended to be generic (i.e., it maps any relational model to an
RDF model), it is likely that working with the RDF “view” of the relational
data will be rather awkward, and figuring out the SPARQL queries to retrieve
model-level data, and making sure that they can run with similar efficiency than
in a fine-tuned RDBMS will likely be a challenge.

4.2 Data Granularity

One of the issues not discussed in the previous discussion of metamodel bias is
that of data granularity. From the service perspective, in many cases data has



a certain natural granularity in the sense that some data only makes sense as
a unit, whereas other data is more loosely linked and can exist even if some of
the linked resources cease to exist. This idea of data granularity is addressed in
document engineering [14], and many frameworks have constructs to deal with
it.

One example is the Unified Modeling Language (UML) [17], which supports
various level of how tightly coupled data is. Association, aggregation, and compo-
sition are the different levels which are supported, and while the exact difference
between these constructs is out of the scope of this paper, it is important to re-
alize that these concepts were deemed important enough to be hardcoded into
the metamodel.

The Extensible Markup Language (XML) and the JavaScript Object Notation
(JSON) are two other examples where there is a level of granularity between
a model’s “atoms” (elements/attributes in XML and fields in JSON) and the
global view of all data available. Data granularity is important for issues such
as provenance, versioning, and security, where the “natural unit” of the data
model (for example an XML document or a JSON object) makes it easier to
express document-level semantics such as the origin, a version number, or a
digital signature.

RDF does not have the concept of documents in the metamodel, there is
no granularity concept beyond the triple. This has been noticed by the HoLD
community as a problem, because reification as one way to solve this problem
has the unfortunate side-effect of increasing data size several-fold, and named
graphs [8] as the other way to solve this problem are not a part of RDF itself,
but have been introduced by SPARQL. This means that as long as all data in
a HoLD scenario is treated as merging seamlessly into one graph (an approach
which for a while was dubbed the giant global graph), RDF works well and
provides a good fit for processing this accumulation of all data into one big
graph. However, when document boundaries become important because of the
provenance, versioning, and security issues mentioned above, there is no support
in the metamodel for modeling this, and applications have to come up with their
own ways of introducing such an intermediate level of granularity between the
“atom” and the “universe” as a whole.

4.3 Data Processing

Maybe the biggest difference between the two linked data approaches are in how
data processing is supposed to work. Data processing can be considered on at
least two different levels: One is the level of metamodels, where the question
is which metamodel processed data is based on, and thus which technologies
and tools are required to be able to process this data. The other level is that
of understanding the meaning of the data, and being able to relate it to other
models or other data. Unsurprisingly, the HoLD approach makes processing and
understanding/combining data simpler, because it is based on a single meta-
model, whereas the HeLD approach allows data to be more diverse, which has
both positive and negative implications.



Processing Mechanics Because HoLD is based on a single metamodel, pro-
cessing can be reliably based on technologies and tools supporting this meta-
model, and then by definition all structured data can be reliably processed.4

HeLD mandates that structured data must be labeled with its format (self-
describing), but if a client encounters data using a metamodel that it does not
support, then it cannot process this data. This allows for new metamodels to be
introduced and gain in popularity (such as the XML/JSON example mentioned
earlier), but it does introduce an element of uncertainty in terms of what clients
can encounter when following links.

Semantics and Mashups The main difference between the basic Semantic
Web and Linked Data (the HoLD variety) is that the latter establishes a set
of patterns and best practices that are intended to actually link data, either
because entities have well-known URIs, or because data and data models are
created using existing data models, allowing data and data models from various
sources to be joined. Again, the mandated use of a single metamodel not only
make processing of individual resource representations easier as discussed above,
they also provide a unified framework within which clients can infer the “mean-
ing” of data (because concepts in RDF are identified by URI), and a simple way
to “mash up” all data, because all data uses the same metamodel. This ability
to combine data from any source is the biggest strength of HoLD, and is much
harder to accomplish in HeLD. HeLD allows different metamodels to co-exist,
and has no unified way of representing structured data, or identifying concepts.
HeLD clients thus have to deal with heterogeneity on two different levels: mod-
els may be hard to relate because there is no standardized way of identifying
concepts, and data can hard to combine because it may be based on different
metamodels.

5 Service Orientation

When looking at data processing as discussed in the previous section, it becomes
apparent that HoLD’s approach allows users to deal with a more unified envi-
ronment, whereas HeLD may require users to deal with various metamodels, and
even for environments where all data is using the same metamodel (for example,
XML), each model has its “private” semantics and there is no established way in
which different models can be related or mapped [30]. This makes it easier to use
data in HoLD, but HeLD does have the advantage of allowing services to use the
metamodel that has the bias that makes most sense for their scenario. However,
this is still looking at the data model level alone, and the next interesting area to
look at is service orientation. How well can services be represented and exposed
in these two approaches, and how do they compare?

4 This is not entirely true because RDF supports various representations and the only
standardized one, RDF/XML [3], has been on a steady decline in popularity, whereas
alternative but not yet standardized syntaxes have become more popular.



On a very abstract level, a service can be defined as a well-defined unit of
functionality that is accessible through some well-defined interface.5 While this
definition is probably general enough to not conflict with any other definition
of services, it is also too wide to serve as a starting point for deciding on how
good or bad specific services are exposed, or even more importantly, for deciding
how well a certain architecture is suited for exposing services, and for allowing
service innovation.

HeLD allows for service innovation in a variety of places, and most impor-
tantly, in the architecture itself. It is possible to introduce new identification
methods, new interfaces, and new metamodels, and while this flexibility makes
it necessary for clients to cope with the potential of new things being invented, it
allows the service ecosystem to evolve over time and to adjust to the varied and
unforeseeable needs and evolution of service providers and consumers. One good
example on the human Web is Flash: Regardless of its merits as a well-designed
or not-so-well-designed container for multimedia content, the open architecture
of the Web allowed this new media type to flourish and succeed. All it needed
was the application/x-shockwave-flash media type to be supported by a
substantial share of clients, and to be provided by an increasing share of ser-
vices. With the recent advances in HTML5 and the problematic support for
Flash on mobile devices, combined with the rise of the mobile Web, it may hap-
pen that multimedia content will increasingly use HTML again, and move away
from Flash. For many content producers, this is not even a major issue, because
they produce their content with tools which increasingly will be able to export
Flash or HTML5 representations of multimedia content. The important observa-
tion is that in this scenario, the service is to provide a multimedia representation
of some content at some URI, and whether this is done in Flash or HTML5 is an
implementation question that has no “correct” answer, but only a “best” answer
given the constraints of content production tools and support for specific media
types on the client side.

From this point of view, the “service” in HeLD is on a more abstract level
than it is in HoLD, and spelling out the specific “service” definition implicitly
asserted by these two approaches is crucial for understanding the differences
between them:

– Service as defined by HoLD: Homogeneity is a top concern in HoLD, because
it allows the seamless joining of both data and models across services. For
this reason, a service in HoLD in required to only use RDF’s metamodel.
HoLD also encourages service providers to reuse existing identifiers, so that
data retrieved from a variety of sources is more likely to be joinable on the
data and/or the model level. From the interaction perspective, the services
currently supported by HoLD are simple resource retrieval (HTTP GET of a

5 For comparison, this is the definition of a service as given by the OASIS SOA ref-
erence model [20]: “A service is a mechanism to enable access to one or more ca-
pabilities, where the access is provided using a prescribed interface and is exercised
consistent with constraints and policies as specified by the service description.”



URI), or SPARQL queries at an endpoint that exposes the SPARQL protocol
via HTTP [9].

– Service as defined by HeLD: Heterogeneity is the biggest differentiating fac-
tor of HeLD, and it starts with identification, which can use a variety of
schemes. Most schemes have well-defined interactions, and the uniform in-
terface constraint of REST should allow clients to interact with a service if
it supports the scheme linking to that service. REST’s self-description con-
straint allows the service to consume and/or provide whatever metamodel it
wants to, as long as the media type is exposed in the interactions.6 The se-
mantics of interactions often may be described or at least constrained by the
interaction protocol associated with the URI scheme (for example, HTTP’s
methods describe basic safe/unsafe and idempotent/non-idempotent seman-
tics for the HTTP methods), but this is not required by HeLD itself.

When contrasting these two approaches on how to define services, the differ-
ences between the approaches become strikingly apparent: HoLD’s homogeneous
approach defines an architecture where everything is predictable: data is always
based on the same metamodel, and services always expose the same function-
ality. Because of this homogeneity, HoLD makes it possible basically ignore the
underlying machinery of HTTP for resource retrieval and SPARQL for remote
query execution: the virtual world view provided by HoLD is that of a seamlessly
interconnected graph of data across all HoLD providers.

HeLD’s world view is less homogeneous and thus supports a less virtualized
world view. In HeLD, clients have to be prepared for heterogeneity on a variety
of levels, which means that by definition they can never have a complete and
definitive view across all HeLD providers, because that would require global
knowledge across an unrealistic set of variables:

– Identification: Identification can use a variety of schemes and new schemes
can be introduced at runtime.

– Interaction: Schemes in most cases imply interaction through a uniform in-
terface, and this uniform interface must be implemented when interaction
with a resource using that scheme is required.

– Representation: There is no fixed metamodel and services are free to con-
sume and provide their preferred metamodel. Discovery of metamodels is
done through registration and runtime labeling of representations with the
metamodel they are based on, but new metamodels can be introduced at
runtime.

– Interpretation: Even if a metamodel is supported, most metamodels do not
have an overarching concept of how models encode and reuse semantics.
Thus, often it is necessary to specifically support the interpretation of mod-
els, which thus must be detectable in representations.7

6 HTTP’s content negotiation adds a dynamic and negotiable pattern to this basic
setup, but we will not discuss the specifics of HTTP here.

7 In XML, for example, this is traditionally done with DTD declarations, XML names-
paces, or XSD-specific attributes, but a recent W3C specification [16] proposes to



Thus, when comparing HoLD and HeLD, the trade-offs between the ap-
proaches become probably best visible on the service level: HoLD standardizes
all services into RDF producers (static RDF or SPARQL endpoints), whereas
HeLD provides an environment which is open and extensible on a variety of
levels. Since HoLD standardizes a lot of this (thus making things more inter-
operable), extensions to this picture have to published as additional standards.
One example is SPARQL Update [29], which extends the currently read-only
nature of SPARQL to support create, update, and delete operations as well.

Since HeLD is more open, evolution and development can happen in a more
informal way. One good example for this is in the area of feeds. Feeds have
become the de-facto standard for lightweight data distribution on the Web, either
using one of the various RSS formats, or the more recent Atom [22]. Feeds are a
good example for HeLD because they provide an evidently working framework for
implementing large scale data distribution and aggregation, but they also allow
publishers to decide on the actual contents of the feed. Podcasts, for example, are
just feeds which happen to carry audio or video content instead of more static
media types. The big disadvantage of feeds has always been their pull model,
which has been a great advantage for achieving loose coupling and scalability, but
also produces a lot of polling in time-critical scenarios. Recently, PubSubHubbub
(PuSH) has achieved some success by layering a push-oriented overlay on top
of the pull model of feeds. PuSH allows clients to register callbacks with “hubs”
(layered designs of multiple hubs are supported), and whenever a feed is updated,
the clients will be notified via their callbacks. The basic information flow remains
unaltered (services produce entries which are exposed via feeds), but the reversed
control flow allows to eliminate polling. From the HeLD perspective, this was a
straightforward innovation, with the only difference being that the media types
involved in the scenario now are reversed in the HTTP interactions (the service
provider or the hub acting on behalf of it acts as an HTTP client pushing the
entry, and the service consumer accepts the entry by running a server at the
callback URI).

Interestingly, recent work on combining SPARQL and PuSH in sparqlPuSH [23]
has replicated this behavior in HoLD, adding a new service to the HoLD picture.
How this new capability (which introduces something that could be described
as “SPARQL triggers” and uses PuSH feeds carrying RDF as the notification
mechanism) fits into the existing picture of HoLD services remains to be seen,
but it fits well into the general direction of the HoLD and Semantic Web re-
search community, where there is an increasingly strong push to move past the
currently established model of “all RDF data accessible via one SPARQL end-
point,” and is moving towards a more distributed scenario, including issues such
as provenance and versioning.

The first draft of SPARQL 1.1 Federation Extensions [25] is looking at the
fact that the current view of a service in HoLD is limited, because it is either
retrieval of a fixed resource from a URI, or submitting a SPARQL query to

use a unified syntax (based on processing instructions) for all these association mech-
anisms.



an endpoint which then returns a subset of the RDF data managed behind
that endpoint. SPARQL federation is supposed to work across a variety of RDF-
oriented data sources, and introduces the SERVICE keyword. Because of the more
constrained view of what a service is, this keyword allows a query to contain a
query to another SPARQL endpoint, and the results of this query will then
become available in the context of the “outer” query. While SPARQL federation
will allow interesting new patterns of how to combine multiple RDF stores, it
does not move outside of the basic assumption that services always consume and
produce RDF, and that the only interactions possible with a service are retrieval
and SPARQL-based querying.

6 Which one is Better?

To a certain extent, research communities both from the HoLD and the HeLD
side picture these two approaches as competing. This does not necessarily have to
be the case. It also is misleading to picture the HoLD approach (or the Semantic
Web in general) as the “next step in Web evolution.” It is much more helpful
to think of both approaches as being complementary, and of having different
strengths and weaknesses.

HoLD shines when it comes to providing an abstraction layer that essentially
makes the Web go away, and allows information to be viewed as the prover-
bial giant global graph. This capability can be very valuable when it comes to
making sense of a large dataset, but it also comes at the price of having to do
the homogenization of all data and services. Often, many of the most expen-
sive tasks for producing good linked data in HoLD are non-technical, such as
when data is aggregated from a wide variety of sources and entity resolution
becomes a cumbersome process made expensive by data quality and a lack of
transparency [33].

HeLD allows a more heterogeneous perspective on linked data and thus al-
lows a greater variety of data sources and services to be used and possibly com-
bined [2]. One possible use for this available data and the combination of available
data sources is to map it to a HoLD view of these sources [1], available in some
RDF mapping of the underlying sources and a SPARQL endpoint for using this
mapped data.

It is probably unrealistic to assume that all data and service providers will
subscribe to the HoLD set of technologies. Thus, it is likely that both approaches
will co-exist for the foreseeable future, and both will have application areas where
they are good fits, or not so good fits. In the HoLD world, the most exiting
development for the near future is probably the inclusion of write features into
the general architecture, and a more decentralized view of how HoLD data can
be used. In the HeLD world, it is necessary to continuously improve the ways in
which fundamental pieces of the infrastructure can use agreed-upon semantics,
such as will be made possible for link relations [21] with a new registry of link
types on the Web.



One way of benefiting from the differences in approach and strengths in
both HoLD and HeLD can be to encourage the use of the less harmonized but
still useful and accessible HeLD style in scenarios where the added expense of
harmonizing models and metamodels is not justified, and to layer the more
harmonized HoLD style on top of those HeLD services, if a more harmonized
view is required, and the expenses for it are justified. Converting a set of HeLD
services into a HoLD service (or, more accurately speaking, providing a HoLD
perspective of a set of HeLD services) can be a value-added service in itself, but
it also can be a costly service to implement. In many cases, most of the costs of
this service will be caused by the expensive and often manual or semi-automatic
tasks of data cleansing and entity resolution.

7 Conclusions

The goal of this paper is to compare the two approaches to Linked Data that are
currently under discussion in the research and developer communities. For the
purpose of this paper, we refer to the approach based on Semantic Web tech-
nologies as Homogeneous Linked Data (HoLD), and to the approach based on
Web architecture and REST as Heterogeneous Linked Data (HeLD). The main
goal of the comparison is to understand how well these approaches work in the
context of service-orientation, and how open they are to service innovation on a
variety of levels. The goal of this paper is a qualitative comparison, pointing out
the strengths and weaknesses of both approaches. The service level turns out
to be a very good comparison between those two approaches, because HoLD’s
more homogenous approach allows clients to work in a very predictable land-
scape of data and services, whereas HeLD’s heterogeneous approach requires
clients to deal with heterogeneity on at least four different levels (identification,
interaction, representation, and interpretation).

In summary, HoLD can be described as defining more constraints, thus pro-
viding a more predictable environment, but also providing less potential for in-
novation, whereas HeLD with its more open approach has less constraints, thus
provides a less predictable environment, but on the other hand has more poten-
tial for innovation. We don’t think that these two approaches have to be mutually
exclusive. In tightly coupled and cooperating environments, the HoLD approach
has obvious benefits by providing a more integrated view of the available data
and services, and allowing developers to better abstract from the underlying
fabric of the Web. In loosely coupled and decentralized environments, the HeLD
approach provides a more flexible and open solution that still establishes pat-
terns and practices for data and services to be linked, but allows a more open
ecosystem that can change over time, introducing new tools and technologies as
service providers and consumers as well as their needs evolve.
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