
Declarative Web 2.0

Erik Wilde
School of Information

UC Berkeley

Abstract

Web 2.0 applications have become popular as drivers of
new types of Web content, but they have also introduced a
new level of interface design in Web development; they are
focusing on richer interfaces, user-generated content, and
better interworking of Web-based applications. The current
foundations of the Web 2.0, however, are strictly imperative
in nature, which makes it difficult to develop applications
which are robust, interoperable, and backwards compati-
ble. Using a declarative approach for Web 2.0 applications,
this new wave of applications can be built on a more ro-
bust foundation which is more in line with the Web’s style
of using declarative methods whenever possible. We show
a path how today’s imperative Web 2.0 applications can be
regarded as a testbed as well as a first implementation for a
revised version of Web 2.0 technologies, which will be based
on declarative markup rather than imperative code.

1 Introduction

Fueling the second wave of the Web’s popularity, the
term Web 2.0 has become highly popular for describing a
new breed of Web applications. It is mainly perceived to
refer to two major areas, one being user-generated content
and the social networks around it, and the other being a set
of technologies providing support for richer interfaces for
Web applications, bringing the user experience of Web ap-
plications closer to that of desktop applications.

In this paper, we refer to both areas; we argue that the
contextual nature of Web 2.0 content needs a better repre-
sentation, and we also argue that the same representation
can be used to better describe the rich interfaces for appli-
cations building on that contextual content. Our claim is
that a declarative way of representing Web 2.0 data provides
benefits in various areas, overall leading to a Declarative
Web 2.0, which is superior to the current Web 2.0 in terms
of machine-readability and loose coupling. A declarative
style of describing a task focuses on describing the task it-
self, rather than describing how the task has to be solved.

While a declarative Web 2.0 represents core information
in structured documents, the current Web 2.0 heavily relies
on imperative principles, with a multitude of JavaScript li-
braries providing largely overlapping sets of functionality.
Switching between these libraries is hard, because they use
different APIs and underlying models and thus tightly cou-
ple user code with a particular library.

One of the main reasons why a declarative approach is
preferable over imperative programming is that declarative
languages provide a better foundation for versioning and ex-
tension, as demonstrated by the Web’s foundation, the Hy-
pertext Markup Language (HTML). Because HTML is de-
signed to tolerate versioning and extensions, older browsers
can be used to render Web pages designed for newer Web
browsers; they will render these pages as good as possible1

within the limitations of the older language.
One area where this issue becomes very visible is in

the area of accessibility. While today’s rich Ajax applica-
tions provide a much better user experience for most users,
they often completely break down in cases where Ajax’s
programming-oriented approach does not work, for exam-
ple when Web pages should be rendered by voice browsers.
Again, declarative approaches would be highly superior
for this scenario, because a declarative application could
be used by two very different clients, one being a visual
browser with advanced interface capabilities, and the other
being a voice browser, which still could access all relevant
application information for rendering it.

Another problematic area of the current imperative
Web 2.0 approach is security, because everything revolves
around code and sometimes very language-specific tech-
nologies. Code injection and other security threats are a
serious issue, and the number of security bulletins about
Ajax-related areas is steadily increasing.

A third area where the current Web 2.0’s shortcoming
become apparent is the area of mashups, which are applica-
tions combining content from different sources. Because
most mashups are based on API-style approaches rather

1This, of course, depends on the page authors to design their pages in a
way which is compliant with HTML’s idea of graceful degradation, rather
than building Web pages that will fail completely in older browsers.



than on declarative markup, they tend to be very brittle, and
in fact most current mashups break very easily when any
of the mashed up applications changes their interface. In
this area, it becomes apparent that API-style coupling is not
a good foundation for loosely coupled systems, and a more
REST-oriented approach is a more promising way for build-
ing loosely coupled Web 2.0 mashups.

In Section 2, we take a closer look on some of the most
popular Web 2.0 application and technologies, trying to es-
tablish a set of common properties which can be used as
starting point for designing declarative structures. The two
most important areas where a declarative approach would
have very real advantages are interface design, discussed
in Section 3, and the loose coupling of distributed applica-
tions, discussed in Section 4. Based on these observations,
Section 5 contains a proposal for declarative Web 2.0 re-
sources. Section 6 contains references to related work from
different application areas, trying to put the “Declarative
Web 2.0” approach into the larger context of Web architec-
ture. Section 7 concludes the paper with final remarks and
some ideas for further work in this area.

2 Web 2.0

The term “Web 2.0” was coined in 2004 to label some
common characteristics of the most successful Web devel-
opments after the bursting of the dot.com bubble. Since the
term has been invented to describe some ongoing activities
in the Web landscape, it does not have a strict definition,
but it has some important major facets, such as seeing the
Web as a platform, harnessing collective intelligence, being
data-centered, using Web-based applications, using light-
weight programming models, using cross-device applica-
tions, and providing rich user experiences.2

This of course is a very diverse list of issues, and it is
intended to be, because its main goal is to describe a set of
properties which are shared by many successful Web com-
panies, and which probably will be important for the future
development of the Web. For a more structured view of
these issues, we look at Web 2.0 from two different per-
spectives, one being the perspective of Web 2.0 application
discussed in Section 2.1, and the other being the perspective
of Web 2.0 technologies, discussed in Section 2.2. Based
on these two perspectives, we then continue by describing
more specifically what the problems and opportunities of
the current state of the art in these areas are.

2.1 Web 2.0 Applications

The four first issues from the above list of Web 2.0 facets
can be used to characterize the majority of successful Web

2All these points are quoted from a September 2005 article by Tim
O’Reilly (http://www.oreillynet.com/lpt/a/6228).

2.0 applications. Many Web 2.0 applications focus on pro-
viding a platform for social structures, knowledge, and data
which already exists, but so far has not been combined in a
useful way. The general principle of Web 2.0 applications
is to try to build an application in this design space, which
then should attract a sufficient number of users to gain trac-
tion. Once this has happened, various business models exist
how to turn such an application into a profitable business.

The interesting observation in the area of Web 2.0 appli-
cations is that they generally focus on the value of making
connections between things which already exist, may it be
people or data. This in essence means that Web 2.0 applica-
tions often are more about formalizing structures, than cre-
ating new content or new structures. By formalizing struc-
tures, these applications create a platform which can then be
used for interested parties to fill in instances into the struc-
tural framework. A classical example are social networking
platforms, which create some kind of formalization of how a
social network is structured, and the actual social structures
are supplied by the users, filling in details about themselves
and the connections they have with other things (which may
be other users or any other identifiable object3).

For this paper, the important observation is that as a com-
mon pattern among Web 2.0 applications, they formalize
existing connections between existing things and then make
them available for previously impossible tasks. By looking
at applications from this perspective, the focus shifts from
that of content to that of context: Instead of working with
content, they formalize context (where context is a special-
ized version of content which always connects existing re-
sources, maybe in connection with annotations for a richer
description of the context).

Blogs are an interesting example for this kind of shift
from content to context: While the general blog model al-
lows the completely detached existence of a blogger, writ-
ing entries which consist only of text, the appeal of blogs
to many people, and the interesting facet of the blogspace
as a technical and social phenomenon, is the fact that blog
entries frequently refer to Web pages and other blog entries,
thus forming a tightly connected network of contextualized
resources [9]. Thus, blog posts can be seen as context, and
a blog then is nothing more than a stream of these context
objects, each adding a new set of connections between the
resources of the blogspace.

At this point it is worth pointing out that there is some
correspondence between this general principle of Web 2.0
applications as context-processing platforms, and the Web
architecture [7], which states that “to achieve the goal [to
build a global community in which any party can share in-

3In this context it is interesting to see that in a popular application such
as MySpace, users invent creative “misuses” of the formalization, for exam-
ple celebrities and even brands assuming the role of a “user” and building
“social” connections with large numbers of other users.

http://www.oreillynet.com/lpt/a/6228


formation with any other party] , the Web makes use of a
single global identification system: the URI. URIs are a cor-
nerstone of Web architecture, providing identification that
is common across the Web.” Consequently, to build Web
2.0 applications in a way conforming with the Web archi-
tecture, all objects of interest in the context of the appli-
cation would have to be made identifiable4 by URIs. As
pointed out in Section 4, such a design would also be the
best foundation for loose coupling. Today, only few Web
2.0 applications are really based on this Web architecture
principle, many use models where important resources are
not exposed through URIs, which makes it impossible to
reuse these applications in a truly Web-oriented way.

2.2 Web 2.0 Technologies

For the technical side of the Web 2.0 facets, the three re-
maining points of the previously listed Web 2.0 facets apply.
This can be summarized into something which often is be-
ing called Asynchronous JavaScript and XML (Ajax), which
is a combination of Dynamic HTML (DHTML) — the abil-
ity of JavaScript to react to HTML events and dynamically
change the HTML’s DOM structure — and the ability to
contact servers via HTTP from within JavaScript code [11].
Many of today’s popular Web 2.0 applications make exten-
sive use of Ajax to provide a better user experience than the
old click/refresh model of Web applications.

From a technical point of view, the Web 2.0 thus is a
rather simple, it relies on better JavaScript and DOM im-
plementations in the browsers and the ability to use HTTP
from within JavaScript. The biggest problem with this ap-
proach, however, is that it violates the principle of “separa-
tion of content, presentation, and interaction” [7]. The very
practical consequence of this is the fact that today’s Web
2.0 application have major accessibility problems, because
the interfaces are well-designed for regular users in visually
oriented browsers, but because of the presentation and inter-
action being buried in JavaScript code, non-visual browsers
have no way of providing access to the application, for ex-
ample through a voice-based interface.

This means that even for a simple technical solution on
how to build better interfaces for Web applications, the im-
perative approach is not a good solution. It can be re-
garded as a useful mechanism for a phase of experimenta-
tion, but for a consolidation and better engineered approach,
a new mechanism is required. The same thing happened in
HTML, which became increasingly interspersed with for-
matting constructs, until it was decided to factor these out
into a dedicated stylesheet language, such as CSS. Newer

4It is important to point out that identifiable is not the same as accessi-
ble, and the Web in fact does not require that URIs must identify accessible
resources (XML Namespaces are an excellent example for URI-identified
resources which are never accessed).

versions of CSS allow effects which previously were only
possible with JavaScript, and they can be used by a much
larger class of devices than JavaScript authored specifically
for visual browsers, because CSS is purely declarative.

What we propose is a second wave of identifying func-
tionality which is reused by many Web developers and mak-
ing it available through a declarative language, thus restor-
ing the separation of content, presentation, and interaction,
which has been violated by Ajax on a large scale.

3 Rich Internet Applications

Ajax is the technical foundation of what is often referred
to as the concept of a Rich Internet Application (RIA), which
tries to more closely match the user interface experience of
a desktop application. The RIA approach has become fea-
sible because JavaScript and DOM implementations of the
major browsers have improved to a point where advanced
cross-browser scripting becomes possible, and the remain-
ing compatibility issues are resolved by widely available
JavaScript libraries. While this approach has been success-
ful in creating a diverse landscape of RIA applications, these
are not easy to maintain. Whenever a new browser ver-
sion is released, it may break something in a library, and
then the library has to be updated to also support this new
version. Likewise, when a new library is released, it may
introduce changes to its functionality, which then requires
applications building on it to be changed. This pattern of
propagated changes can make site maintenance very expen-
sive, in particular if a site relies on more than one library.

The main problem is that JavaScript libraries are tightly
coupled with the JavaScript implementation of browsers,
and Web applications are tightly coupled with the libraries
they are using. Together, this creates a ripple-through effect
where every change in the browser or library landscape has
severe consequences for applications depending on these
components. And because the model of interaction be-
tween libraries and browsers, and applications and libraries,
is based on the API-style of coupling, instead of degrading
gracefully, applications break down completely when some-
thing in their foundation changes. With the wide-spread
adoption of RIA interfaces, this problem has become wide-
spread, and more robust and better designed JavaScript li-
braries are only a short-time solution.

While the term “declarative Web 2.0” has not been pop-
ularized so far, the term “declarative Ajax” has gained some
traction. This shows that the community of developers
working on RIAs has discovered that the current model of
API-style interfaces proves to be not very robust. Version-
ing issues with new versions of Ajax libraries and the in-
ability to switch between Ajax libraries are an indication
of the fact that the coupling between the abstract interface
design issues, and the technologies used for implementing



these designs, is too tight. While we think that the term
“declarative Ajax” in a way is a contradiction in itself (if
something is tightly bound to a programming language, it
is not declarative), we believe that the discussions in this
area is a sign that the need for a more robust approach is
increasingly being recognized.

From the technology perspective, this means that the
Web 2.0 needs a declarative way to represent the Ajax style
of building RIA applications. This is primarily a question of
representing presentation and interaction within the context
of a single Web application, and Section 5 outlines a way
how this can be done. Before this, however, Section 4 looks
at the different but similar issues that the mashup facet of
Web 2.0 applications raises.

4 Loose Coupling

Web 2.0 applications can be regarded as formalizing con-
text, and giving users a platform to capture context, share
context, and use and capitalize context by mining it in ways
which before the Web 2.0 were not available. The most
interesting examples of Web 2.0 applications are mashups,
which take context from other applications, and then reuse it
in a new and different application scenario. Web 2.0 appli-
cation often explicitly encourage this pattern of application
development by publishing some sort of API.

Most applications exposing APIs either provide a
SOAP [5] or a REST [3] interface. SOAP interfaces have
significantly declined in popularity, because the API-style
of SOAP introduces all the problems of tight coupling men-
tioned earlier, and also SOAP requires a lot of tools to
be used, and it makes it hard to build pure client-side
mashups.5 For this reason, REST-style interfaces have be-
come more popular, but only few of these “REST inter-
faces” are well designed, and most importantly, they expose
the data of the application in a proprietary format.

For successful communications between cooperating ap-
plications, it is necessary to share a common understanding
of the data that is being exchanged, and the current model of
REST interfaces makes it necessary to achieve this common
understanding individually for each pair of communicating
applications, because there is no common data model across
Web 2.0 applications. We propose such a model in the fol-
lowing section, which would provide a minimal data model
being shared across applications, so that cooperation among
applications requires less coordination and has less depen-
dencies on proprietary data formats.

5For client-side integration, SOAP is a significant hurdle, because a
complete client-side implementation of SOAP is a rather heavyweight
component.

5 Web 2.0 Resources

For a declarative Web 2.0, there must be data format
which captures the essential facets of the resources being
used, and since we identify context to be the underlying
common concept of Web 2.0 data, it must be a data format
for expressing the associations of multiple resources. The
W3C has standardized a language for this, which is called
the XML Linking Language (XLink) [2]. The XLink speci-
fication was unsuccessful for a variety of reasons, but in the
new context of the Web 2.0, it provides a very convenient
way of expressing the contextual nature of data. For exam-
ple, Figure 1 shows how a blog post can be expressed as an
XLink, we call such a resource a blog link (blink).

All xlink-prefixed attributes are XLink standard at-
tributes (the XLink vocabulary uses attributes only), with
the xlink:type attribute determining the XLink type of
each element. For link structures, two major categories of
elements can be distinguished:

• Resources: These elements represent resources partic-
ipating in a link. Resources can be either referenced
using a URI (which then appears in the xlink:href
attribute) with locator elements, or they can be em-
bedded into the link by using resource elements.
Resources participating in a link are simply part of
the link, and for blinks, we classify them using the
xlink:label attribute, which is an indication of the
role of the resource in the context of the blink.

• Arcs: Elements being of type arc represent con-
nections between resources of a link; these are the
traversable paths between blink resources. Arcs con-
nect pairs of resources based on their labels, and
each arc specifies from which label it is going to
which label. If there are more resources tagged with
an arc’s labels, then the arc represents more than one
connection between a pair of resources.

The resources in the blink have been extracted from the
blog post (which means that the blink simply is a differ-
ent representation of the blog post). They are a represen-
tation of blog post content and metadata. The resources
are the blog post as permalink (<permalink>) and as
HTML fragment (<post>), links to the blog’s home page
(<blog>), the blog’s author (<author>), and the blog’s
feed (<feed>), as well as a number of URIs which have
been mentioned in the blog post (<posturi>), and a time
stamp indicating the post date (<timestamp>). Only the
blog post and the time stamp are embedded resources, all
other participating resources are URI references to Web re-
sources.

The important observation is that the majority of Web 2.0
resources can be represented as XLinks, for example data



<blink xlink:type="extended" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:title="Sorry Pluto...">
<permalink xlink:type="locator" xlink:title="Sorry Pluto..." xlink:label="permalink"

xlink:href="http://docordie.blogspot.com/2006/08/sorry-pluto-and-some-thoughts-about.html"/>
<author xlink:type="locator" xlink:title="Bob Glushko" xlink:label="author"

xlink:href="http://www.ischool.berkeley.edu/˜glushko/"/>
<blog xlink:type="locator" xlink:title="Doc Or Die" xlink:label="blog"

xlink:href="http://docordie.blogspot.com/"/>
<feed xlink:type="locator" xlink:title="’Doc Or Die’ Atom Feed" xlink:label="feed"

xlink:href="http://docordie.blogspot.com/atom.xml"/>
<posturi xlink:type="locator" xlink:label="site"

xlink:href="http://en.wikipedia.org/wiki/International_Astronomical_Union"/>
<posturi xlink:type="locator" xlink:label="site"

xlink:href="http://www.modbee.com/local/story/12638580p-13341408c.html"/>
<posturi xlink:type="locator" xlink:label="site"

xlink:href="http://www.freenewmexican.com/news/48332.html"/>
<posturi xlink:type="locator" xlink:label="site"

xlink:href="http://www.miami.com/mld/miamiherald/living/15365590.htm"/>
<post xlink:type="resource" xlink:label="post" xlink:title="Sorry Pluto..." type="text/html">
<h2 xmlns="http://www.w3.org/1999/xhtml">Sorry Pluto...</h2>
<!-- complete HTML snippet of blog post -->
</post>
<timestamp xlink:type="resource" xlink:label="timestamp" type="xs:date">2006-08-27</timestamp>
<arc xlink:type="arc" xlink:from="permalink" xlink:to="timestamp" xlink:title="Post Time"/>
<arc xlink:type="arc" xlink:from="site" xlink:to="post" xlink:title="Blog Post"/>
<arc xlink:type="arc" xlink:from="permalink" xlink:to="author" xlink:title="Post Author"/>
<arc xlink:type="arc" xlink:from="permalink" xlink:to="blog" xlink:title="Blog Home"/>
<arc xlink:type="arc" xlink:from="blog" xlink:to="author" xlink:title="Blog Author"/>
<arc xlink:type="arc" xlink:from="blog" xlink:to="feed" xlink:title="Blog Feed"/>
<arc xlink:type="arc" xlink:from="author" xlink:to="blog" xlink:title="Authored Blogs"/>

</blink>

Figure 1. Blog Post Represented as XLink

from a social networking site could represent a person’s pro-
file by mapping the networking facets (the connections with
other persons, groups, and other identifiable resources) to
XLink resources, in effect turning the profile into an XLink.
This link would use different labels and arcs, but the
framework (the fact that it is an XLink) remains the same.

The RIA support outlined in Section 3 could also be rep-
resented by XLinks, because XLink supports behavior at-
tributes for controlling user interaction with a link. This
means that a significant subset of RIA interactions (those
which, based on user interaction, update the DOM and/or
use HTTP requests) could also be modeled by XLinks, even
though XLink’s current set of behaviors is too restricted and
most likely would have to be extended to better serve the de-
mands of RIA developers. But given a sufficiently powerful
XLink, many parts of RIA interactions could be specified
declaratively, not relying on any specific JavaScript library.

The biggest disadvantage of XLink in its current state is
that the specification has a number of technical shortcom-
ings, and that there are no complementary specifications for
how to retrieve XLinks over HTTP, or how to render them.
While the Atom Publishing Protocol (APP) [4] is a very
promising candidate for the first scenario, the presentation
problem so far is unsolved.

It could be argued that structures such as the blink shown
in Figure 1 are clearly establishing relationships between

URI-identified resources and thus should be represented
based on the Resource Description Framework (RDF) [8],
which is the W3C’s generic format for metadata. However,
we argue that RDF so far has failed to deliver real benefits
on a large scale, and that specialized semantics are easier to
understand and use and thus more likely to be adopted by
Web developers. The Gleaning Resource Descriptions from
Dialects of Languages (GRDDL) [1] approach could be an
easy way to transform XLinks to RDF, though, if for some
reason applications wanted to get an RDF representation of
declarative Web 2.0 resources using XLink syntax.

6 Related Work

The declarative Web 2.0 approach presented here has
connections with many areas of Web and information in-
tegration technologies. From the Web technology perspec-
tive, the question is which abstractions are widely used
so that they warrant representation in a declarative format.
CSS is the example which demonstrated that given enough
users and interest from the developer side, it is possible
to create new abstractions on the Web for frequently oc-
curring design patterns. We believe that the Web 2.0 has
shown emerging patterns, and that the approach of capturing
these in a resource format based on context representation
is a promising approach. The ability to use XLink as the



foundation for the Web as an open hypermedia system [10]
(which is not discussed in this paper) also addresses many
issues which are typical for Web 2.0 applications.

From the information integration perspective, the prob-
lem described in this paper can be regarded as being sim-
ilar to the problem of Enterprise Information Integration
(EII) [6], which deals with the problem of how to answer
queries over distributed heterogeneous sources. However,
EII has a number of different focuses, most notably it (a)
can afford to build on some fairly complex infrastructure,
because EII problems typically are solved in large compa-
nies which can afford to deploy expensive tools, and (b) has
the goal of integrating all heterogeneous sources into one
unified model, whereas the approach discussed in this pa-
per is more targeted at exposing a minimal set of shared
structures among Web 2.0 applications, without the claim
to provide an exhaustive model for these applications.

Another area which has many connections with the work
discussed here is that of Web Services and the Service Ori-
ented Architecture (SOA) in general. The current debate
around SOAP/WSDL-based Web services or the REST style
closely mirrors the API-style of the current Web 2.0 appli-
cations, and the resource-oriented style for the declarative
Web 2.0. In both scenarios, API-style technologies tend to
work at least in an acceptable way as long as they are used
in a scenario which is governed by one single controlling
entity, but they easily fail in a loosely coupled scenario with
independent versioning and extensions [12].

One of the interesting facets of the work presented here
is that it is located in the area where the Web as an infor-
mation system and Web-based applications as traditionally
engineered software systems are now merging. Since its
beginning, the Web often has been regarded as a new in-
terface to applications, but not really as one application.
The SOAP/WSDL Web services area also shows this rather
clearly, with SOAP using HTTP as a transport protocol
and then simply re-creating all the middleware functional-
ity from the traditional discipline of distributed systems on
top of this. The Web as an application may still need some
more time to become widely accepted, and Web 2.0 is an
important development along this path.

7 Conclusions

In the same way as HTML experimentation and unin-
tended uses, such as using tables for page layout, paved the
path for CSS, enabling a design of a language which sup-
ported the functionality required by real-world Web users,
we believe the current wave of Ajax experimentation paves
the path for a new way of Web applications, which ulti-
mately should be based on declarative technologies. Factor-
ing out the commonalities of Web 2.0 and coming up with
a model that covers a large percentage of Web 2.0 use cases

without being overly complicated is not an easy task, but it
should be done to reestablish one of the Web’s fundamen-
tal principles, without abandoning the exciting applications
and technologies which have fueled the Web 2.0 wave.

While XLink has been standardized for a while now and
has various problems associated with it, its general approach
looks promising as an approach of how to represent com-
mon structures for Web 2.0 applications. We do think, how-
ever, that the current state of the specification calls for a
major upgrade, since many of the standard’s technical short-
comings cannot be fixed in a backwards compatible way.
An improved XLink in conjunction with well-defined link
retrieval and link presentation could then become the foun-
dation for the declarative Web 2.0.

References

[1] DAN CONNOLLY. Gleaning Resource Descriptions from Dialects
of Languages (GRDDL). World Wide Web Consortium, Candidate
Recommendation CR-grddl-20070502, May 2007.

[2] STEVEN J. DEROSE, EVE MALER, and DAVID ORCHARD. XML
Linking Language (XLink) Version 1.0. World Wide Web Consor-
tium, Recommendation REC-xlink-20010627, June 2001.

[3] ROY T. FIELDING. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University of
California, Irvine, Irvine, California, 2000.

[4] JOE GREGORIO and BILL DE HÓRA. The Atom Publishing Pro-
tocol. Internet Draft draft-ietf-atompub-protocol-15, May 2007.

[5] MARTIN GUDGIN, MARC HADLEY, NOAH MENDELSOHN,
JEAN-JACQUES MOREAU, HENRIK FRYSTYK NIELSEN, ANISH
KARMARKAR, and YVES LAFON. SOAP Version 1.2 Part 1: Mes-
saging Framework (Second Edition). World Wide Web Consor-
tium, Recommendation REC-soap12-part1-20070427, April 2007.

[6] ALON Y. HALEVY, NAVEEN ASHISH, DINA BITTON,
MICHAEL J. CAREY, DENISE DRAPER, JEFF POLLOCK,
ARNON ROSENTHAL, and VISHAL SIKKA. Enterprise Infor-
mation Integration: Successes, Challenges and Controversies.
In FATMA ÖZCAN, editor, Proceedings of the ACM SIGMOD
2005 International Conference on Management of Data, pages
778–787, Baltimore, Maryland, June 2005. ACM Press.

[7] IAN JACOBS and NORMAN WALSH. Architecture of the World
Wide Web, Volume One. World Wide Web Consortium, Recom-
mendation REC-webarch-20041215, December 2004.

[8] GRAHAM KLYNE and JEREMY J. CARROLL. Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax. World
Wide Web Consortium, Recommendation REC-rdf-concepts-
20040210, February 2004.

[9] RAVI KUMAR, JASMINE NOVAK, PRABHAKAR RAGHAVAN, and
ANDREW TOMKINS. Structure and Evolution of Blogspace. Com-
munications of the ACM, 47(12):35–39, December 2004.

[10] DAVID LOWE and ERIK WILDE. Improving Web Linking Using
XLink. In Proceedings of Open Publish 2001, Sydney, Australia,
July 2001.

[11] ANNE VAN KESTEREN. The XMLHttpRequest Object. World
Wide Web Consortium, Working Draft WD-XMLHttpRequest-
20070618, June 2007.

[12] ERIK WILDE. What are you talking about? In Proceedings of the
2007 IEEE International Conference on Services Computing, Salt
Lake City, Utah, July 2007.


	Introduction
	Web 2.0
	Web 2.0 Applications
	Web 2.0 Technologies

	Rich Internet Applications
	Loose Coupling
	Web 2.0 Resources
	Related Work
	Conclusions

