
Mapping XML Instances

Sai Anand
ETH Zürich

anand@tik.ee.ethz.ch

Erik Wilde
ETH Zürich

net.dret@dret.net

ABSTRACT
For XML-based applications in general and B2B applica-
tions in particular, mapping between differently structured
XML documents, to enable exchange of data, is a basic prob-
lem. A generic solution to the problem is of interest and de-
sirable both in an academic and practical sense. We present
a case study of the problem that arises in an XML based
project, which involves mapping of different XML schemas
to each other. We describe our approach to solving the prob-
lem, its advantages and limitations. We also compare and
contrast our approach with previously known approaches
and commercially available software solutions.
Categories and Subject Descriptors: D.2 [Software]: Soft-
ware Engineering; H.4.m [Information Systems]: Miscellaneous

General Terms: Algorithms, Experimentation, Design

1. INTRODUCTION
The Shared References (ShaRef) project [3] develops soft-

ware that helps maintain bibliographic information in indi-
vidual and shared settings, so that bibliographic data can
be shared between users. One of the central issues in the
design of the tool is its ability to import and export bibli-
ographies maintained by individual users in various formats.
The system uses an internal data model defined by an XML
schema. To provide flexibility to users that migrate from
other formats and also for those that wish to use their bibli-
ographies outside of ShaRef, import and export features are
provided. Currently, BibTEX, Endnote 7/8, and MODS are
supported. Figure 1 shows the import/export design. Note
how native non-XML formats (like BibTEX and Endnote)
are handled by first parsing them into XML.

Figure 1: Sharef Import/Export Design

A principal problem that occurs in many XML-based ap-
plications is that of mapping XML schemas (“XML schema”
is used throughout this paper to refer to the generic con-
cept, and not only the W3C schema language) to each other.
This problem is not limited or special to XML alone and is

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

common in database applications as well. In the database
domain, the mapping problem is well studied. A survey pa-
per by Rahm and Bernstein [2] characterizes the various
automated approaches to schema matching, which are also
relevant to mapping XML schemas.

There are two aspects to the general mapping problem:
a) semantic interoperability and b) instance mapping. Se-
mantic interoperability addresses how schemas are mapped
to each other and if, in fact, they can be mapped at all.
The instance mapping aspect addresses how instances of one
schema are mapped to the other. Because semantic interop-
erability requires domain knowledge but no implementation,
it can logically be completely separated from instance map-
ping. In practice, however, there often is an overlap that
makes it harder to do the separation.

2. MAPPING XML INSTANCES
While mapping XML instances itself is essential for im-

plementing XML interchange, it has to be combined with
another mapping procedure, which is the mapping of XML
structures to application structures. These application struc-
tures may be objects (in case of OO languages) or other
runtime constructs. Only this mapping to application struc-
tures makes it possible to work with the XML data in the ap-
plication environment. Figure 2 shows how these mappings
relate. While the XML-XML mapping is located between
the different application environments, each application en-
vironments has its own way of mapping XML to application
data structures, a process that is often referred to as “XML
Data Binding”.

Figure 2: The XML Instance Mapping Process

For achieving semantic interoperability, it is necessary to
specify how nodes (elements and attributes) of two schemas
relate to each other. It is useful to distinguish the following
four kinds of mappings of nodes:

• One-to-One (1:1): The value of a node in one schema
is mapped to another node in the other schema, with
little or no processing. This is the simplest mapping
between nodes. For example, two schemas use different
names to designate the same concept.

• Many-to-One, One-to-Many (1:n): Here, two or more
nodes of one schema are mapped to the same node



in the other. For example, Endnote defines differ-
ent elements for storing the ISBN/ISSN numbers of
a reference and for URLs. MODS, on the other hand,
stores everything in a single element called identifier

and distinguishes them using an attribute of this el-
ement. Thus, mapping ISBNs/ISSNs and URLs to
identifiers is a many-to-one mapping.

• Unions: With Union mappings, values of several nodes
in the source schema are mapped onto a single node in
the target schema. The difference between many-to-
one and union mappings is that whereas in the former
the individual nodes of the source schema are still sep-
arate nodes in the target schema, in the latter values
of separate entities of the source schema are combined
into one element or entity. For example, combining the
values of year and month nodes in the source schema
to a single value in the date node of the target schema
is a union mapping.

• Context Sensitive mappings: In several cases, mapping
of nodes cannot be done by semantical considerations
alone. The mapping is also influenced by the con-
text within which it occurs. For example, authors and
editors in BibTEX are mapped onto person elements
in ShaRef, and are distinguished based on an attribute
of the person element. In this case, the export pro-
cess has to make use of context sensitive information
for producing a correct BibTEX entry.

MapForceTM and Stylus Studio are two industry-grade soft-
ware solutions for developing XML applications. They pro-
vide a graphical interface for performing XML schema map-
pings, where mappings between nodes are specified by con-
necting them. Once the mappings are specified, XSLT code
that implements the mapping is automatically generated.
This is very intuitive for one-to-one mappings. While many-
to-one and one-to-many mappings are also handled by the
GUI, it usually requires some explicit implementation ef-
fort on the part of the designer to get the expected output.
Union mappings and context sensitive mappings are either
handled only partially or not at all. Thus, their use is limited
when specifying mappings moderate complexity. Another
drawback is that they handle mappings unidirectionally, i.e.
information available from mapping one schema to another
cannot be reused when doing the reverse mapping.

Handt and Quantz [1] provide a formal framework for
the general schema mapping problem. They call it XML
Schema correspondences. Their essential idea is to not only
specify the mappings between the various elements of the
two schemas, but also to describe how the transformation is
to be done. In a second step, the above specification is used
to generate “transformer” code that actually performs the
conversions of instances of one schema into another. The
advantage of the approach is that it does provide a generic
solution to the mapping problem. However, the fact that
the mapping and the transformation specifications are in-
tegrated means that the “domain expert” would have to go
beyond just mapping the two schemas and specify the trans-
formation as well.

Our approach is to separate the mapping specification
from the code that implements the actual mapping itself.
We call it the 2-phase approach. This is done, firstly, by
specifying the map as an XML document, each mapping
node of which specifies what the mapping from an external

1:1/1:n Union Context 2-phase 2-way

MapForce ✓ (✓)
Stylus Studio ✓ (✓)

[1] ✓ ✓ ✓
ShaRef ✓ ✓ (✓) ✓ ✓

Table 1: Comparison of the various approaches

format (BibTEX, Endnote 7/8, or MODS) to ShaRef is. In
the case of one-to-one, one-to-many or many-to-one map-
pings, this is straightforward. In the case of union and con-
text sensitive mappings, the mapping node uses attributes to
specify that some extra processing needs to be done. Thus,
most of the domain specific details are isolated in the map.
Also, conversion between two external formats is achieved
by going via the internal data model.

Secondly, the code that actually implements the mapping
is an XSLT program. The XSLT has as its input an XML
document that needs to be transformed into another XML
format. For each node in the source XML document, the
XSLT refers to the map to produce the corresponding node
in the target format. For union and context sensitive map-
pings, a complete isolation of the domain specific details in
the map file would have lead to a complicated specification.
This, in turn, would mean implementing XSLT code to de-
cipher the specification. We avoided this by building some
domain specific knowledge directly into the XSLT code.

Table 1 shows a comparison of the approaches and soft-
ware solutions in terms of their capability to handle the
different mappings, whether they separate the mapping and
implementing stages (2-phase), and whether they support
using the mapping information for both mapping directions
(2-way). The parentheses around a tick mark (✓) indicate
that the mapping is handled in a limited sense.

3. CONCLUSIONS AND FUTURE PLANS
When searching for a solution for the mapping problem in

the ShaRef project, it turned out that there was no generic
way to handle the problems associated with the application
scenario. The approach described here is being used in the
ShaRef software and provides a reasonable solution for the
mapping problems. While this is sufficient for the immediate
project requirements, the approach would need some refine-
ment to be evolved into a more generic approach. We be-
lieve that the two-pass approach of separating the matching
specification, and the implementation of the actual matching
process, is a useful separation between the more knowledge-
oriented domain of schema matching, and the more code-
oriented domain of implementing instance matching. Even
though there is surprisingly little research being done in this
area, we hope that the ubiquitous problem of mapping XML
instances will receive more attention in the future.

4. REFERENCES
[1] Arne Handt and Joachim Quantz. XML Schema

Correspondences. In Robert Tolksdorf and Rainer Eckstein,
editors, Proceedings of XSW 2002 — XML Technologien für
das Semantic Web, volume 14 of Lecture Notes in Informatics,
pages 93–104, Berlin, Germany, June 2002. Gesellschaft für
Informatik.

[2] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches
to Automatic Schema Matching. The International Journal on
Very Large Data Bases, 10(4):334–350, December 2001.

[3] Erik Wilde. References as Knowledge Management. Issues in
Science & Technology Librarianship, No. 41, Fall 2004.


	Introduction
	Mapping XML Instances
	Conclusions and Future Plans
	References

