
The Extensible XML Information Set

Erik Wilde
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology, Zürich

TIK Report 160 (February 2003)

Abstract

XML and its data model, the XML Information Set, are used for a large number of
applications. These applications have widely varying data models, ranging from very sim-
ple regular trees to irregularly structured graphs using many different types of nodes and
vertices. While some applications are sufficiently supported by the data model provided
by the XML Infoset itself, others could benefit from extensions of the data model and
assistance for these extensions in supporting XML technologies (such as the DOM API
or the XSLT programming language). In this paper, we describe the Extensible XML
Information Set (EXIS), which is a reformulation of the XML Infoset targeted at making
the Infoset easier to extend and to make these extensions usable in higher-level XML
technologies. EXIS provides a framework for defining extensions to the core XML Infoset,
and for identifying these extensions (using namespace names). Higher-level XML tech-
nologies (such as DOM or XPath) can then support EXIS extensions through additional
interfaces, such as a dedicated DOM module, or XPath extension mechanisms (extension
axes and/or functions). In order to make EXIS work, additional efforts are required in
these areas of higher-level XML technologies, but EXIS itself could be used rather quickly
to provide a foundation for well-defined Infoset extensions, such as XML Schema’s PSVI
contributions, or the reformulation of XLink as being based on a data model (rather than
a syntax).

Contents

1 Introduction 2

2 Motivation 3

3 The XML Information Set 4

4 Requirements 5

5 The Extensible XML Information Set 6

6 Applications 10

7 Open Issues 12

8 Conclusions 13



1 Introduction

The Extensible Markup Language (XML) [5] and its data model, the XML Information Set
(XML Infoset) [7], today serve as a foundation for many data formats and applications. While
it is possible to map a large variety of data models onto the tree structure provided by XML,
in many cases it would be useful to extend the data model of XML, and to use this extended
data model together with the growing set of XML technologies (such as DOM, SAX, XSLT,
and XQuery) as well as in applications.

Coming from a background of XML and hypermedia, and in particular the XML Linking
Language (XLink) [8], we were drawn to the conclusion that it can have substantial advantages
to specify a data model before a syntax. As an example, the lengthy debate about whether
XHTML 2.0 should use XLink or use its own linking model, was largely clouded by discussions
about the XLink syntax, rather than the link model defined by XLink. What this paper is
about is a reformulation of the XML Infoset (which does not change anything about what is in
the core Infoset and what is not), which makes it easier and more well-defined to extend, and
thus enables layered XML applications augmenting the data model of XML with new items
and/or properties. We call this reformulation the Extensible XML Information Set (EXIS).

The proposal of such an extensible XML data model is controversial. While it would
certainly add to the complexity of XML-related specifications, it would be transparent to
users not interested in it and would only have to be used by specification authors or users who
are interested in making their particular piece of XML technology extensible and accessible
through standard XML mechanisms, such as XPath or DOM. We see the divide between
XML users as following:

• Users satisfied with the XML data model

For this class of users, who are content with the data model that XML and the Infoset
provide, EXIS probably is of little interest. There is one exception, which is the support
of non-standard XML encodings. Some people may be happy with XML’s data model,
but may have problems with its verbose syntax. For these users, a framework enabling
the use of multiple syntaxes may be interesting (in Section 5.2, this particular point will
be discussed in more detail).

• Users requiring a more sophisticated data model

Some users may want to see particular facets of their data model reflected in the data
model, rather than having to map them onto the core XML data model. In this case,
a way to extend the data model and then manipulate data with this extended model
through standard XML technologies is certainly useful. Users finding themselves in this
situation probably will like the approach of EXIS with its more flexible and powerful
way of using XML-based data.

We start this paper with Section 2 about the original motivation behind EXIS, and why
we think that EXIS would be a good way to make XML-based technologies and applications
more flexible. We then continue by shortly describing the current XML Infoset specification in
Section 3, in particular its shortcomings (when it comes to well-defined extensibility). Moving
on, we go into detail about EXIS giving a list of requirements (Section 4), describing the EXIS
model itself (Section 5), and then give some examples of application areas where EXIS will
provide a benefit to specification and application authors (Section 6). After that, we finish
the paper by listing open issues (Section 7) and giving some concluding remarks (Section 8).

2



2 Motivation

XML’s data model, the XML Infoset, defines a number of Information Items and Properties,
which represent the information contained in an XML document. The Infoset ignores some
information, such as whitespace in tags, or the order of attributes in a tag1. The Infoset can
be regarded as a somewhat arbitrary, but widely accepted decision of what is relevant in an
XML document and what is not. Because users may disagree, the Infoset explicitly allows
extensions or restrictions of the Infoset. However, the Infoset is rather vague about the way
how to extend or restrict it, and thus there is no established way to do it, and then to use
these “derived infosets”.

We therefore suggest to leave the Infoset’s data model as it is, but to make more explicit
the ways in which the Infoset may be used for deriving other infosets, in particular extensions
to it. The following areas need clarification:

• How are Infoset extensions identified?

• In which way(s) may the Infoset be extended?

• How are Infoset extension instances represented?

To regular XML users, who are glad to have XML as a globally accepted and supported
syntax to exchange structured data, the idea of extending the Infoset may seem excessive in
terms of complexity. However, looking from a perspective of specification designers as well as
authors of applications with complex data models, it makes a lot of sense to extend XML’s
core data model with additional information. Two examples of XML technologies which
could benefit from an extended XML data model are CSS (which basically is a method to
assign formatting semantics to elements), and XLink (which adds a link structure to an XML
document). In order to illustrate the motivation behind the idea of extending the Infoset, we
describe the XLink scenario in more detail.

A first proposal of XLink as a data model (rather than a syntax) has been published by
Walsh [17], but this model was not complete and geared towards the presentation of XLinks.
In a generalization [19], the idea of an XLink data model was elaborated further, and seeing
that this reformulation of XLink as a data model required a solid foundation on which it could
be built, we have made the point that the Infoset should be extensible in a general way [18].

While it is certainly possible to manipulate documents containing XLinks through XPath
or DOM, this is rather error-prone and cumbersome: It is necessary to identify the XLink
attributes by their namespace, and the fact that some element is participating in a link is
not reflected in the element itself, but through a hierarchical relationship in the document
structure. Furthermore, third-party links (links coming from another source than from the
document they are linking) are not reflected in the core XML data model at all, but it would
certainly be helpful to have them in the data model, too (if the application is enabled to
retrieve third-party links).

Consequently, while it is theoretically possible to deal with documents containing XLink
through standard XPath or DOM, this is not a very good way to go. As a result, one would
either create some sort of proprietary XLink handling for manipulating these documents (in
effect creating a DIY “DOM XLink module”), or one could argue that this is only one example

1See Appendix D of the XML Infoset Specification [7].

3

http://www.w3.org/TR/xml-infoset/#omitted
http://www.w3.org/TR/xml-infoset/#omitted


for other scenarios also introducing this kind of problem when using XML. We decided that
it would be better to look at the root of the problem, and the result of this work is the idea
to make XML’s data model extensible in an open way.

Now one could argue that the Infoset is already open to extensions (as well as restrictions),
and this is certainly true. However, this openness is only vaguely defined and not supported
in any of the upper layers of the XML technologies. The most prominent example for this
is XML Schema [16], which introduces a number of additional Infoset properties, the Post
Schema Validation Infoset (PSVI) contributions. From a modelling perspective, this was the
way to go. However, because there is no clearly defined interface for this extended Infoset, it
is impossible to access these PSVI contributions from XPath or DOM in a standardized way.

Finally, it is interesting to look at the similarities between XLink and XML Schema
Infoset augmentation, because it shows a general tendency of why it may be reasonable to
use an extended data model: An application may get an XML document, and then retrieve
XLinks which augment the document’s original data. In much the same way, XML Schema
defines validation as taking an XML document (a regular Infoset), and then validating it by
augmenting the document’s data with the results of the validation (the PSVI contributions).
In both cases, the data model extensions are not inherently part of the data, but are created
through an additional processing step (link retrieval or validation).

3 The XML Information Set

Historically, the XML Information Set (XML Infoset) [7] was created when specification
writers recognized that rather than being based on a syntax, it would make much more sense
for many XML specifications to be built on top of a data model, i.e., an abstraction of the
XML syntax. The result of these efforts to define an XML data model, the XML Infoset,
defines 11 types of Information Items, each having a number of Properties. While the Infoset
explicitly allows to create sub- or supersets, it does not say how to do so. For example, it is
not clear which datatypes may be used for properties, and what the possible relationships are
between different items (the core Infoset uses sets and lists). Additionally, the Infoset uses
some “special values” for properties (in particular, no value and unknown), and there is no
definition of how to exactly use these values, and whether there may be other special values.

Furthermore, it is completely unclear how to specify derived Infosets (the Infoset specifi-
cation uses a non-formal, text-based way to define the items and properties), and how these
derived Infosets may be identified and used by other specifications or applications. Thus, only
little use of the Infoset’s flexibility has been seen so far. The XML Schema PSVI example
mentioned in the previous section demonstrates this by using a non-formal way of specifying
the PSVI contributions2. The downside of this laudable effort to keep things in line with
existing specifications is that implementors of XML Schema processors have no standardized
way of exposing PSVI contributions to applications, and consequently users of XML Schema
processors have no standardized access to PSVI information.

Consequently, it can be seen that even though the XML Infoset was immensely important
for moving XML from a syntax-only tree representations to a data model that can be used
for complex higher-level technologies, such as APIs (such as DOM and SAX) and a way of
addressing into XML documents (XPath and layers on top of it, such as XSLT and XQuery),
the Infoset’s design has also made it hard to move one step further and make XML’s data

2See Section C.2 of the XML Schema Specification [16].

4

http://www.w3.org/TR/xmlschema-1/#PSVI_contributions
http://www.w3.org/TR/xmlschema-1/#PSVI_contributions


model easily extensible. It is important to note that our approach to changing the Infoset
does not change any of the items or properties of the core Infoset, it simply puts them into a
context where they can be reused more easily.

4 Requirements

Based on the possible applications for an extensible Infoset described in Section 2, the re-
quirements for an improved version of the XML Infoset can be summarized as follows:

• Provide a formal notation for Infoset extensions

Since Infoset extensions refer to other Infoset modules (the modules they are extending),
it must be possible to formally (i.e., in a machine-readable way) identify the items of
interest of an Infoset extension (the items of interest are the module itself, and the
properties and the items it defines).

• Provide a way to identify Infoset extensions

Infoset extensions always refer to other Infosets (either to the core Infoset, or to another
Infoset extension), and thus it must be possible to identify Infoset extensions in a
globally unique way.

• Hierarchies of extensions must be possible

Infoset extensions form an acyclic graph, with the core Infoset as the root node, and all
other Infoset extensions referring directly or indirectly to it. Thus, extensions can be
extended, if necessary.

• Identify the possible structural elements

The current Infoset specification only uses items and properties. It is necessary to
decide whether these are the only structural elements allowed in Infosets, or whether
other structural elements are possible.

• Support datatypes for properties

On request, Cowan, one of the authors of the Infoset specification, stated that “every
property has a type given, either ‘set of items’, ‘list of items’, or a simple type; and
‘no value’ is a special value, and ‘unknown’ is used when we are dealing with partial
infosets.” However, this characterization of properties’ types is rather vague, and has
to be clarified by introducing a proper type system for properties.

• Provide a way to specify syntaxes for extensions

While an Infoset extension is sufficient to define the data model of a given extension
of XML’s core data model, it is not clear how to represent data (i.e., instances of this
data model). In order to be able to refer to representations of Infoset extensions, it is
necessary that syntaxes can be identified somehow, so that software can make statements
such as “this parser accepts syntaxes ‘a’ and ‘b’ for the Infoset extension ‘c’.”

Based on these requirements, we designed the Extensible XML Information Set (EXIS)
described in the following section. It should be kept in mind, though, that at the time of
writing the current design has still some open issues (listed in Section 7) and thus may undergo
minor revisions before becoming stable.

5



5 The Extensible XML Information Set

In this section, we describe the Extensible XML Information Set (EXIS), which is a method
for formally describing extensions of Infosets. Revisiting the questions from Section 2, EXIS
provides the following features:

• How are Infoset extensions identified?

Infoset extensions are identified by namespace names (see Section 5.1.1 for details).

• In which way(s) may the Infoset be extended?

Infoset extensions may add items and/or properties. Properties may be added to exist-
ing or newly defined items. Properties may be sets or sequences of references to items,
or may use any XML Schema simple type (see Section 5.1.2 for details).

• How are Infoset extension instances represented?

Infoset extensions may either be represented in a (extremely verbose) standard XML
syntax, or in any other syntax for which a mapping from the Infoset’s data model to syn-
tactic constructs is defined. Syntaxes are defined by namespace names (see Section 5.2
for details).

In the following sections, we describe in detail how EXIS is defined. EXIS itself is defined
as an XML Schema (EXIS modules are XML documents), which is augmented by some
Schematron code for specifying additional constraints. The XML documents shown in the
following sections have been shortened for clarity and to illustrate the features being discussed
in the respective sections.

5.1 Data Model Extensions

An EXIS module, the definition of an Infoset extension, is identified by a name and defines
a number of items and/or properties. In the following sections, these issues are described in
detail.

5.1.1 Extension Names

An EXIS module must have a name. The name mainly serves two purposes, the first one is
to make the EXIS module suitable for further extensions, and the second one is to enable
implementations (for example, DOM or XSLT software) to communicate about the EXIS
modules it is supporting. Since there is a well-known and widely used naming mechanism
in the realm of XML technologies, the XML Namespaces [4] recommendation, EXIS uses
namespace names as its way to uniquely name a certain module.

While namespace names are mostly used to identify sets of names for XML documents,
this is not the only possible way to use namespaces: XML Schema uses namespaces to identify
type names, introducing the concept of a symbol space3, which is not very different from the
namespace partition concept introduced by the XML Namespaces specification. In a similar
fashion, we use a namespace name to identify the names of an EXIS module (we distinguish
between item and property names).

3See Section 2.5 of the XML Schema Specification [16].

6

http://www.w3.org/TR/xmlschema-1/#concepts-nameSymbolSpaces
http://www.w3.org/TR/xmlschema-1/#concepts-nameSymbolSpaces


<infoset xmlns="...">
<head>
<name ns="..."/>
<extends id="xlink" ns="..."/>

</head>
...

</infoset>

Figure 1: Identification of Infoset extensions

In Figure 1 it is shown how the namespace name of an EXIS module is declared using
the name element in the infoset’s head section. The extends element, on the other hand,
references an EXIS module that is being extended, in this case it gets assigned the id xlink
(for local references shown in the following section), and it is referenced through its namespace
name specified using the ns attribute.

5.1.2 Items and Properties

An EXIS module defines items and/or properties extending the EXIS modules it is referenc-
ing4. Items can be easily defined to consist of properties, and properties are defined to either
use XML Schema Datatypes [2], or some of the few special datatypes defined by EXIS itself.

For an illustration of an EXIS module, we show some excerpts from the EXIS module for
the XLink data model [19]. The complete XLink EXIS module defines four information items
and a total of 32 properties.

In Figure 2 it is shown how an item is defined. Each item element has a name through
which it may be referenced (for example, by other EXIS modules), and a field for describing
its purpose (non-formally, using plain text). The item is then defined by listing its properties
(in this example, we show only one property). Each property element has a name through
which it may be referenced, and a type, which is defined by the property element’s content.

In this example, the property’s type is an enumeration of values, defined by an XML
Schema simple type5. Because the property may also have the value ‘unknown’, this case
is also allowed by using EXIS’s special element, which references the special values that
properties may have.

EXIS also allows to define properties for items of modules which are being extended.
Figure 3 shows an example of the syntax for this case. The properties element under the
body level6 contains all properties which are defined for items outside of the EXIS module
(i.e., in modules which are referenced directly or indirectly by extends clauses).

Properties in this second case are defined exactly in the same way as they are defined
directly inside of items, with one exception: Since there is no context to determine which
item this property belongs to, this must be made explicit by one or more item elements
which refer to the respective item(s) by using the id of the EXIS module they are defined in

4Choosing the terms carefully, it would be more appropriate to speak of item and property types, since
items and properties appear in instances rather than the modules. However, so far we have not introduced the
“type” terminology.

5We currently only allow anonymous types, so that the type must be defined within the property element
and may not be referenced by name.

6Note that this is the same element as the properties elements contained in the item element shown in
Figure 2. The parent of the properties element determines its use.

7



<infoset xmlns="..." xmlns:xs="...">
<head>
<name ns="..."/>
<extends id="core" ns="..."/>
</head>
<body>
<items>
<item name="link">
<desc>...</desc>
<properties>
<property name="type">
<desc>...</desc>
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="simple"/>
<xs:enumeration value="extended"/>
</xs:restriction>
</xs:simpleType>
<special type="unknown"/>

</property>
...
</item>
...
</properties>

</items>
<properties>...</properties>
</body>
</infoset>

Figure 2: Definition of Items and Properties

(as declared in the extends clause) and the items’ name(s).
The last interesting observation in this example is the type of the property. Since this

property contains a reference to a single item, it uses a special reference element to declare
this. Other allowed values of the reference element’s type attribute are sequence and set,
thus enabling properties to reference items in different ways. Because references often are
restricted to certain kinds of items, all allowed items are listed by using item elements inside
the reference element (if the reference element is empty, there is no such restriction of
allowed items). Since the allowed item in our example is a local item (i.e., declared in the
XLink EXIS module itself), it doesn’t need to be referenced by using an id.

In summary, the syntax for EXIS modules is a simple schema language for defining items
and properties, and includes a type system that mainly references XML Schema’s datatypes,
but also provides some types of its own. The actual syntax of EXIS modules is a little bit
more complicated than shown in these examples, but the difference is negligible and is mainly
caused by documentation features.

5.2 Data Model Syntaxes

A data model can be very useful for handling data (accessing it through an API such as DOM
or manipulating using mechanisms such as XSLT or XQuery), but the main reason for XML’s

8



<infoset xmlns="..." xmlns:xs="...">
<head>
<name ns="..."/>
<extends id="core" ns="..."/>
</head>
<body>
<items>...</items>
<properties>
<property name="xlink resource">
<desc>...</desc>
<item id="core" name="element"/>
<reference type="single">
<item name="resource"/>
</reference>
<special type="novalue"/>
</property>
...

</properties>
</body>
</infoset>

Figure 3: Definition of Properties of external Items

success is its creation of a universally accepted interchange format. Thus, when dealing with
Infosets and Infoset extensions, it is also important to think about representations of instances
of these data models. In a very simple approach, it is possible to define a mapping from an
Infoset to a syntax for it, and Tobin and Thompson have done this already, defining an XML
Schema for the core XML Infoset7. We have done a very similar thing, but extended it so
that it handles EXIS modules. Thus, by using this mapping, there is an XML representation
for every EXIS module. However, this approach leads to very large and hardly readable
documents. Consequently, in many cases better syntaxes will have to be defined.

Going back to the example of XLink, it can be seen that its data model, as implicitly
defined by the XLink specification (and made explicit in our EXIS module shown in the
previous section), is represented by an XML syntax using attributes only. This syntax could
(and, in a cleanly separated world of specifications, should) be defined separately from the
data model. In this case, it would be rather easy to define parts of the XHTML syntax as
simply another syntax for the XLink data model. Or, if XHTML required some extensions
of the XLink data model (as seems to be indicated by the HLink [14] draft published by the
XHTML working group), then the XLink EXIS module could have been extended, adding
the required items and/or properties, thus rendering XHTML linking a proper superset of
XLink, while still maintaining the shared foundation of the XLink data model.

In order to make this possible, it is necessary to make syntaxes identifiable. By doing this,
a syntax specification could claim to be some representation of a data model (by referencing
the namespace name of its EXIS module), and make itself globally recognizable through a
namespace name. Applications could then not only list the data models they support, but
also the syntaxes the recognize. A properly designed DOM EXIS module (see Section 6.1 for
details) would allow users to query a DOM implementation for the supported data models and

7The schema is available at http://www.w3.org/2001/05/serialized-infoset-schema.

9

http://www.w3.org/2001/05/serialized-infoset-schema


syntaxes. For example, while one implementation would support the XLink data model but
only recognize XHTML syntax, another implementation would also recognize XLink syntax,
thus enabling users to process XHTML as well as XLink documents and use a common link
data model for both of them.

Going one step further, it would also be possible to allow alternative syntaxes for the core
XML Infoset. While XML 1.0 syntax would certainly be required by every implementation, it
would be possible to cleanly identify alternative representations of XML, such as the Millau
XML encoding by Girardot and Sundaresan [10, 15]. While the majority of XML users
is satisfied with XML 1.0 syntax, some users in high-volume and/or high-speed application
areas have serious problems dealing with the verbose XML 1.0 syntax, and would be happy
to have a portable way of integrating the handling of other syntaxes into application.

Currently, EXIS does not place any restrictions on a data model syntax, and it would
be very hard to do so, seeing that it doesn’t even have to be based on XML 1.0. However,
EXIS requires that syntaxes representing EXIS modules properly reference the module by its
namespace name, and declare a namespace name that can be used to identify the syntax.

6 Applications

The EXIS module syntax defined in the previous section is a good tool for cleanly modelling
data models on top of XML’s core data model, and thus may serve as a tool for specification
writers. In fact, the Infoset often is quoted as being for “specification writers only”. However,
we think that the Infoset as it is today as well as the EXIS approach are important to
XML users also, and thus XML users should be educated about this foundation of XML
technologies. Apart from the knowledge of XML’s data model, what benefit is there for users
if EXIS gets adopted?

As a simple example, we can look at Cascading Style Sheets (CSS) [13]. Sadly, CSS is one
of the few W3C specifications to completely ignore the Infoset. While this is understandable
from the point of view that it has been developed for HTML rather than XML, other tech-
nologies have made the transition, in particular DOM3 which finally integrates the Infoset. If
CSS made the transition to a proper support of the Infoset, then it would be possible to define
an additional CSS module for EXIS, defining new selectors for selecting EXIS-defined items
or properties, rather than only XML elements or attributes. However, since EXIS is more
targeted at applications processing data than simply presenting it, we think that the most
interesting application of EXIS are in this area, which is discussed in the following sections.

6.1 Document Object Model

The Document Object Model (DOM) [12] in its latest version, DOM3, is still under develop-
ment. DOM3 introduces a number of new modules when comparing it to DOM2, and also for
the first time provides an Infoset-based view of a document8. Following this modular struc-
ture, it would be possible to define a DOM EXIS module. This module would enable users to
uses extended data models through a standard DOM interface, thus eliminating the need for
implementing proprietary solutions for dealing with extended data models. Two of the most
important interfaces of this module would enable users to query a DOM implementation for

8Previous DOM versions used a data model that had a number of minor deviations from the Infoset model.

10



the supported data models and syntaxes. Users could then use other interfaces to access and
manipulate extended data structures through this module.

Reiterating the XLink/XHTML example from Section 5.2, an application could use an
DOM EXIS module supporting the XLink data model as well as the XLink and XHTML
syntaxes to uniformly handle linking information, being independent from the fact whether
the linking information had been represented in XLink or XHTML.

Using another example, we could think of PSVI being rewritten as an EXIS module.
The most obvious advantage of this approach would be that PSVI contributions would be
accessible through the DOM EXIS module, while currently accessing PSVI contributions is
impossible or entirely proprietary9.

Defining a generic DOM EXIS module leaves open the possibility to define dedicated
modules for popular data models, but it also makes it easier for application authors to access
EXIS data without having to wait for dedicated DOM modules. Of course, if any data
model would gain so much popularity that users would like to have a more specialized, more
specifically designed interface, it would always be possible to define a new DOM module for
it (such as DOM XLink or PSVI modules). However, software not supporting this module
could still provide the information through the generic interface, while users of the dedicated
DOM module would enjoy a better interface design.

6.2 XML Path Language

In the same sense as the XML Infoset serves as a foundation for a number of XML technologies,
the XML Path Language (XPath) [6] does the same. XPath is based on the XML Infoset and
serves as a foundation for XSLT, XML Schema, and XPointer. In its next version, XPath
2.0 [1] and its accompanying data model [9], will also serve as the foundation for the upcoming
XML Query Language (XQuery) [3] as well as for XSLT 2.0 [11]. XPath defines a mapping
of the Infoset’s model of items and properties to a model of nodes, basically providing a slight
simplification of the Infoset model10. XPath then defines a language for selecting parts of the
node tree.

Currently, the node tree is hard-coded into the XPath data model, in XPath 1.0 it is
based on the Infoset only, in XPath 2.0 on the Infoset and PSVI contributions. We suggest
to extend this data model to include EXIS items and properties, reflecting the data model
extensions described by EXIS modules in the XPath node tree. XPath already has some
extension mechanisms, currently only for referencing extension functions which may be used
in XPath expressions.

However, it is easy to think of ways to integrate EXIS into the XPath model without
introducing backwards compatibility problems, because XPath still has some “open spots” in
its syntax. The most conservative way would be to access EXIS information through built-in
or even extension functions, but this would make the authoring and reading of XPaths using
EXIS unnecessarily hard. Several other alternatives are possible (assuming that the data
model of XPath 2.0 is extended to map EXIS items and properties to the XPath node tree):

• Extension axes
9For example, Apache’s Xerces parser provides an interface to access PSVI via DOM, but using this pro-

prietary interface makes it hard to port an application to another parser.
10XPath 2.0 also adds information from PSVI contributions, thus making it clear that non-core information

may also be part of the XPath data model.

11



Some items in XPath are addresses through axes, in particular by using the attribute
and the namespace axis. These axes navigate from the context node to the attribute or
namespace node(s) associated with it. In a similar way, extension axes could navigate
from nodes to associated EXIS nodes. However, since successful navigation not only
requires the target type of the node to be known, but also the property through which
to navigate, this scenario may lead to problems when looking at the most general cases.

• Extension node tests

As the second component of a location step, a node test is specified. This node test may
be either a name test or a kind test. A name test tests named nodes (for example, a
comment node does not have a name), while a kind test tests for a specific node kind, in
XPath 2.0 the defined kinds are processing-instruction, comment, text, and node
(testing for any kind). The kind test syntax (identified by a trailing ‘()’) could be
extended to include namespace-prefixed names, identifying EXIS nodes.

In both cases, the resulting syntax would be rather concise, making it possible to extend
the compact XPath syntax to a more flexible and extensible data model. However, it should
be noted that some aspects of the Infoset (such as parent/child relationships and certain other
kinds of relations established by properties referring to items) are buried deep in the model
and the syntax of XPath, and it would certainly be a non-trivial task to extend XPath to
fully support EXIS.

However, we think it could be worth the effort, since this would enable users to define their
own data models using EXIS, and then use a very high-level language to address into this
data. For example, using an EXIS-enabled XQuery, it would be trivial to write XQueries that
query into XLink-authored data and return it as XHTML or vice versa. No programming at
all would be necessary.

7 Open Issues

In the following list of open issues, we describe some of the questions in the design of EXIS and
some of the questions of how to integrate it with other technologies, which are still unresolved.

• Naming of “imported” items and properties

In every Infoset (with the single exception of the core Infoset), the items and proper-
ties being defined of this Infoset are the union of the Infoset itself and all the Infosets
it is referring to directly or indirectly. Now the question arises how to name the im-
ported items and properties. They could either be referred to by their original Infoset
namespace name, or by the namespace name of the Infoset which imported the other
Infoset(s). Both approaches (“importing” the names or using the original name) have
advantages and drawbacks, and so far we haven’t decided which way to go.

• Reserved properties

Even though Infoset extensions are free to name the items and/or properties they are
defining, it might make sense to reserve some properties for special purposes. For
example, the children and parent property names could be reserved to always denote

12



parent/child relations11, and the name property name could be reserved to always denote
an item’s name.

These reserved properties could then be used to make possible certain easier ways to
use an Infoset extension, for example the parent/child relationship making possible the
hierarchical navigation in a tree (such as a DOM tree or an XPath node tree), or an
item’s name making it possible to use standard XPath name tests (a special kind of a
node test) for selecting the item.

• Extensibility of properties

In our current version, Infoset extensions can extend Infosets by adding items and/or
properties. It would also be possible to think of an extension which only extends a
property’s datatype, for example allowing new values in a set of predefined values for
a property. Unfortunately, XML Schema does not allow to extend simple types, so if
we would like to keep XML Schema as the foundation for our datatypes, this type of
extensibility would have to be defined as follows: “A property extended in an Infoset
must be extended in a way so that the simple type of the original property is a legal
restriction of the extended property.” We are not sure whether this definition would be
a good way to go.

We are sure that this list of open issues is not complete. In particular, when investigating
in more detail the three possible application areas described in Section 6, CSS, DOM, and
XPath, it is almost certain that new questions will arise.

Another issue is the question of politics. Creating and successfully pushing a new XML
technology involves a lot of politics, and since EXIS is placed in the very heart of XML, it will
certainly be hard to convince people to accept it. Irrespective of its technical qualities, many
people will not like the idea of new DOM modules and a revised XPath 2.0. XPath 2.0 and
XQuery 1.0 are currently under construction and will remain so for some time to come, even
without major redesigns. So the question of how enthusiastic people feel about something
like EXIS still remains to be seen, and will certainly be important for the future of our work.

8 Conclusions

In this paper, we have described a new way of looking at XML’s data model. The Extensible
XML Information Set (EXIS) is an extensible way of using the XML Infoset. While EXIS
does not change anything about the items and properties of the core Infoset, it creates a
framework for defining Infoset extensions, packaged into EXIS modules. The goal of this
formalization of the Infoset is to make Infoset extensions better supported in higher-level
XML technologies such as DOM and XPath. EXIS has been inspired by the efforts to cleanly
design and handle a linking model for XML, and is currently still under constructing. In
particular, the possibilities for its support in higher-level XML technologies still have to be
investigated.

11Interestingly, this relation isn’t necessarily symmetric. The core Infoset defines elements to be the parents
of attributes, while the attributes are not children of the elements.

13



References

[1] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael
Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0. World
Wide Web Consortium, Working Draft WD-xpath20-20021115, November 2002.

[2] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. World Wide Web
Consortium, Recommendation REC-xmlschema-2-20010502, May 2001.

[3] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language. World Wide Web
Consortium, Working Draft WD-xquery-20021115, November 2002.

[4] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. World Wide
Web Consortium, Recommendation REC-xml-names-19990114, January 1999.

[5] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). World Wide Web Consortium, Recommendation REC-
xml-20001006, October 2000.

[6] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0. World
Wide Web Consortium, Recommendation REC-xpath-19991116, November 1999.

[7] John Cowan and Richard Tobin. XML Information Set. World Wide Web Consortium,
Recommendation REC-xml-infoset-20011024, October 2001.

[8] Steven J. DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink)
Version 1.0. World Wide Web Consortium, Recommendation REC-xlink-20010627, June 2001.

[9] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 Data Model. World Wide Web Consortium, Working Draft
WD-query-datamodel-20021115, November 2002.

[10] Marc Girardot and Neel Sundaresan. Millau: An Encoding Format for Efficient Rep-
resentation and Exchange of XML over the Web. In Proceedings of the Nineth International
World Wide Web Conference, pages 747–765, Amsterdam, Netherlands, May 2000. Elsevier.

[11] Michael Kay. XSL Transformations (XSLT) Version 2.0. World Wide Web Consortium,
Working Draft WD-xslt20-20021115, November 2002.

[12] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Thomas Nicol,
Jonathan Robie, Mike Champion, and Steven Byrne. Document Object Model (DOM)
Level 3 Core Specification. World Wide Web Consortium, Working Draft WD-DOM-Level-3-
Core-20021022, October 2002.

[13] Eric A. Meyer and Bert Bos. CSS3 Introduction. World Wide Web Consortium, Working
Draft WD-css3-roadmap-20010523, May 2001.

[14] Steven Pemberton and Masayasu Ishikawa. HLink: Link recognition for the XHTML
Family. World Wide Web Consortium, Working Draft WD-hlink-20020913, September 2002.

[15] Neel Sundaresan and Reshad Moussa. Algorithms and programming models for efficient
representation of XML for Internet applications. Computer Networks, 39(5):681–697, August
2002.

[16] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. World Wide Web Consortium, Recommendation REC-xmlschema-
1-20010502, May 2001.

[17] Norman Walsh. XML Linking and Style. World Wide Web Consortium, Note NOTE-xml-
link-style-20010605, June 2001.

[18] Erik Wilde. Making the Infoset Extensible. In Proceedings of XML 2002, Baltimore, Maryland,
December 2002.

14



[19] Erik Wilde. A Proposal for XLink Infoset Contributions. Technical Report TIK-Report No.
148, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology,
Zürich, Switzerland, August 2002.

15


	Introduction
	Motivation
	The XML Information Set
	Requirements
	The Extensible XML Information Set
	Applications
	Open Issues
	Conclusions

