
RESTful SPARQL? You Name It!

Aligning SPARQL with REST and Resource Orientation

Erik Wilde
dret@berkeley.edu

School of Information, UC Berkeley, USA

Michael Hausenblas
michael.hausenblas@deri.org

DERI, National University of Ireland, Galway

ABSTRACT
SPARQL is the standard query language for RDF, but cur-
rently is a read-only language defined in a way similar to
SQL: Queries can be formulated, are submitted to a single
processing facility, which then returns a result set. In this
paper, we examine the shortcomings of this approach with
regard to Web architecture, and propose a path towards a
language that is more in line with basic principles of Web
architecture. While this work has been done in the con-
text of a proposed update extension for SPARQL, our focus
is on how to apply the principles of Representational State
Transfer (REST) to SPARQL. Our claim is that a REST-
ful redesign of SPARQL allows the Semantic Web to evolve
in a more decentralized and openly accessible way than the
current RPC-style design of SPARQL.

1. MOTIVATION
SPARQL [6] is the standard query language for RDF,

widely adopted and is currently extended [5] into several
directions, such as aggregates and update functions. While
adding features is certainly desired by the Semantic Web
community at large, we observe the need to discuss the de-
sign of the protocol [1]. We will show in the following that
the current SPARQL protocol design is not RESTful in the
sense of the Resource-Oriented Architecture (ROA) [7] and
propose a way to overcome this situation. Our proposed so-
lution additionally addresses the planned SPARQL update
features and hence provides a route towards a RESTful Se-
mantic Web.

As we have pointed out previously [3, 4], the realization
of a read-write Semantic Web depends heavily on a scal-
able and sound update mechanism concerning RDF graphs.
However, as we will show in the following, there is a schism
between the RDF, graph-based world, and the document-
oriented Web at large. The fundamental reason for that is
that Semantic Web approaches often operate on a big graph
of RDF triples, either virtual or actually available from one
central place, whereas the Web and its underlying princi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEWST 2009, November 9, 2009 Eindhoven, Netherlands
Copyright 2009 ACM 978-1-60558-776-9/09/11 ...$5.00.

ple of Representational State Transfer (REST) [2] is based
on a decentralized model where interactions with individ-
ual resources are possible, based on a uniform interface, and
questions of data provenance, authenticity and integrity, and
deeply intertwined with this general interaction model.

Our work explores the possibilities and limitations of map-
ping SPARQL query forms1 (SELECT, CONSTRUCT, etc.), as
well as update forms (INSERT, DELETE, etc.), that are sub-
ject to standardization as time of writing, to HTTP meth-
ods, such as GET , or PUT (note that, in order to avoid confu-
sion we will keep this formatting, i.e., italic fonts for HTTP
methods, normal typewriter for SPARQL forms). Figure 1,
though illustrative rather than descriptive, depicts the fo-
cus of our work at hand, which is the interfacing between
the layers. It is illustrated how the current protocol ap-
proaches HTTP as a transport protocol, instead of using it
as the application protocol.

Figure 1: SPARQL over HTTP conceptual layering

The paper is structured as follows: In Section 2 we briefly
review both the REST architecture style and SPARQL. Then,
in Section 3 we highlight the central issues around how to
redesign SPARQL to be more RESTful. We present our so-
lution to the alignment problem on a theoretical and practi-
cal level in Section 4, and finally discuss our findings as well
as outline future work in Section 5.

2. SPARQL AND REST
RDF is the core specification of the Semantic Web. It is

a graph-based metamodel that is based on triples of subject,
predicate, and object, where subject and predicate are always
URIs, whereas the object can be a value or a URI. RDF
itself makes no assertions about how triples or graphs are
accessible, and it has no higher-level concept of collections or

1http://www.w3.org/TR/rdf-sparql-query/#QueryForms

documents. SPARQL introduces such a concept in the form
of named graphs, but this concept only exists in the context
of SPARQL, is not necessarily supported in all SPARQL
implementations, and is not part of any interaction model
around SPARQL-accessible collections of RDF data.

REST is the architectural style underlying the Web it-
self, it has been distilled from the core specifications of the
Web, and the most important constraint is that in RESTful
systems, everything is exposed as a resource via a uniform
interface. This is different from traditional middleware and
other distributed systems approaches, which often start from
the procedural model of local programming approaches, and
then extend this to Remote Procedure Call (RPC) models
in an attempt to hide distribution and failure and to al-
low programmers to work with a distributed system as they
would with a local system. REST, on the other hand, is
built around the idea of decentralized systems, which means
that it is not a design goal to hide distribution; on the con-
trary, accessing remote resources is made explicit through
using their identifiers, and programmers have to take into
account that remote accesses can fail.

While REST is simply an architectural style, various acronyms
have been proposed to name the instantiation of that style
in the Web technologies we have today, most importantly
URIs, HTTP, HTML, media types, and XML. Resource Ori-
ented Architecture (ROA) and Web Oriented Architecture
(WOA) both are terms that are being used, but for the pur-
pose of this paper, we will continue to use the term REST,
but will refer to the specific technologies used in today’s
Web, and not just the general architectural style.

2.1 RESTful Architectures
RESTful design revolves interactions around resources;

resources identify all relevant concepts in the application
space (information resources as well as state), interactions
are based on a uniform interface implemented for all re-
sources, resources can have various media types (identifica-
tion of the media type is part of uniform interface), and
applications interact with RESTful services by traversing a
network of resources interconnected by links.

RESTful architectures differ from RPC-style architectures
mainly in their more explicit way of dealing with distribution
(instead of trying to hide distribution, applications must be
aware of the fact that they are interacting in a distributed,
unreliable, and possible hostile environment), and in turning
the traditional RPC model upside down [9]. In RPC, the
prime abstraction is the function that can be called, and
objects in services often are identified, but this identification
typically is only within the context of a particular service
or application. In REST, on the other hand, identification
via URI is the primary architectural concern, and functions
are not all that important because the usage of a uniform
interface for interactions makes it much easier to understand
the possible interactions with a resource.

The debate around the advantages of RESTful vs. RPC-
style services (mostly in the form of SOAP/WS-* services)
is still ongoing. The biggest difference is probably the main
focus: RPC-style services focus on development-time ad-
vantages, have good support for tooling (such as generating
stubs from interface descriptions), and generally try to pro-
vide programmers with the convenience of an environment
that tries to hide distribution as much as possible, creating
the perception of programming a single system. REST, on

the other hand, focuses more on loose coupling, runtime is-
sues such as the ability to rely on a uniform interface, and
forces programmers to accept the fact that they are devel-
oping in an environment that is heterogeneous, unreliable,
and possible hostile. This different “world view” is well re-
flected in the two biggest user groups of RPC vs. REST:
RPC is most popular in enterprise IT, which often starts
with the explicit goal of building one integrated system, and
traditionally has been using middleware platforms. REST is
most popular in the world of smaller players in the context
of the Web, where it is necessary to quickly expose, use,
reuse, and repurpose existing services, and where there is
not even an implicit goal of building one integrated system:
the world of the Web is loosely coupled, heterogeneous, and
the easier services can be used, the more they will be used.
This is highlighted by the fact that many of the major play-
ers on the Web (such as Google and Flickr) have seen much
less uptake of their SOAP APIs than of their REST APIs,
and sometimes even stopped supporting the SOAP API due
to a lack of interest.

Another important issue about RESTful services is that
they can be easily mixed and remixed, because they imple-
ment the same interface and resources are addressed in a
way that is consistent across services. This makes it easy
to combine RESTful services, but as a prerequisite for this,
these services must properly expose all relevant resources
via URIs, and must support HTTP interactions with those
URIs, so that the services can be used in a RESTful fashion.

2.2 The SPARQL Protocol
SPARQL [6] can be regarded as being on the same level as

SQL: It is a query language based on a certain metamodel,
that operates on a database storing data of that metamodel,
and returns a query result in that metamodel. SPARQL as
such has little to do with the Web’s RESTful underpinnings,
it is just a back-end language for querying a database. The
SPARQL protocol [1] is providing a means how to package a
request and a response in SOAP or in HTTP messages, but
it does not change SPARQL’s basic approach of an “end-
point” which is returning a result that is not embedded into
a network of URI-identified resources that support HTTP
interactions.

2.2.1 The Current State
The SPARQL Protocol defines a means of conveying SPARQL

queries from query clients to query processors. The protocol
essential comprises two parts, (i) an abstract interface inde-
pendent of any concrete binding to another protocol, and (ii)
HTTP and SOAP bindings of the abstract interface. The
SPARQL Protocol is described abstractly with the Web Ser-
vices Description Language (WSDL). We will focus on the
HTTP binding in the following, as this seems to be the more
Web-oriented approach.

In fact, there are two HTTP bindings defined in the SPARQL
Protocol, queryHttpGet and queryHttpPost, where the lat-
ter should be used in cases where the URL-encoded query
exceeds practical limits. This design violates basic REST
principles, since the request method used in the uniform in-
terface (in this case, the HTTP protocol) has to be based
on the interaction semantics, not on implementation details.
In REST, this difference is important because GET is sup-
posed to be idempotent and safe, whereas POST has none
of those properties. Since the current SPARQL version is

read-only, the best conceptual choice would be to use GET .
POST has been chosen because for longer queries the URI-
based query syntax may exceed length limitations of HTTP
implementations (often around 4KB). While it is possible
to use GET requests with a message body (which could be
used to submit the query), the current HTTP specification
unfortunately is silent about whether this is allowed or dis-
allowed, and consequently, implementations differ in their
handling of GET requests with message bodies.

Conclusion.
The above discussed, “read-only” version of the SPARQL

Protocol is (almost) RESTful.

2.2.2 The Planned Extensions
As outlined in the planned features of the W3C SPARQL

Working Group2:

The Working Group has resolved to specify a
SPARQL/Update language, but may also pur-
sue a HTTP based graph update via the proto-
col. This issue is orthogonal to the SPARQL/Up-
date language. Whether or not there will be
a concrete mapping between SPARQL/Update
and HTTP based graph update is currently un-
der discussion in the working group.

The current discussion seems to tend into a POST-only di-
rection. We will discuss issues with this solution and outline
potential solutions in the following. The underlying problem
is that a design based on a single endpoint and interactions
with that endpoint only, or on RESTful resources exposed
through actionable URIs is not a mere interface design issue;
it has implications on the data model and the data that a
query operates on and returns as a response.

REST considerations become much more important in
scenarios beyond read-only access, because a richer set of
interactions with RDF services would require well-designed
mappings of how to expose these services’ RDF through ac-
tionable URIs, and how it is possible to PUT , POST , GET ,
and DELETE RDF data using HTTP methods and interac-
tion with URIs that have a well-defined relationship with
the RDF triples managed by the service.

Conclusion.
RESTful SPARQL is not just a design issue of the SPARQL

protocol. For the SPARQL protocol to become RESTful,
SPARQL itself must be able to support such a protocol;
specifically, it must support interactions with URI-identified
resources.

3. ISSUES
The most important step in REST is to identify the re-

sources that services want to build their interactions around,
so that they can then be exposed as hyperlinked resource
representations. We hence start from the information unit
concept and claim that this is something that always has to
be done on a per-applications basis, however it can be de-
fined in ways which make it easy to find those information
units. This might be achieved simply by locating them with

2http://www.w3.org/TR/sparql-features/
#sparql-update

a SPARQL query, and then assigning identifiers to them,
which can be used in an URI template mechanism.

What this does is essentially add a new level of RDF gran-
ularity; it introduces a concept which in many other scenar-
ios is referred to as a document : A unit of data that is self-
contained (but contains links to other resources) and can
be interacted with as a whole. We claim that this level of
granularity not only is required to support RESTful inter-
actions in RDF-centered scenarios; it is also required when
it comes to issues such as data assurance, authenticity, in-
tegrity, security, and provenance, where is becomes essential
to be able to talk about datasets and be able to talk about
them by using RESTful identifiers.

The discovery of information units has to be addressed [8],
that is, a method is needed to find out which information
units are available. Additionally, the identification process
could also expose this information by using feeds, so that
the list of identifiers would be serialized as a feed [10], which
is a well-known and widely supported RESTful interaction
pattern on today’s Web.

Our main goal is to reuse as much of today’s Web tech-
nologies and Web practices, and the biggest missing part we
have identified is the fact that SPARQL in its current design
lacks the identifiable units that have to be identified (logi-
cally as well as by URI) to build a RESTful protocol around
them.

Based on the current state and the premises given above,
we have identified three main issues:

• SPARQL’s grounding in RDF makes it harder to think
of more meaningful coarse-grained units that can be
exposed and accessed in a RESTful way; in SQL and
XML one has certain “grouping” features built into the
metamodel (tables/rows or documents), but this not
the case in RDF, natively.

• The HTTP binding itself (see Section 2.2 for the cur-
rent bindings and the current direction of the discus-
sion).

• Eventually, there is no identity on RDF triple level,
which makes it hard to realize the information unit
concept.

With these three problems in mind, we submit that trans-
forming SPARQL into a RESTful protocol requires an effort
to be more explicit on the RDF metamodel level to name
both triples and information units (i.e., graphs). Identifying
and naming entities that are important for interactions is
the first and most fundamental activity in designing REST-
ful services.

Since SPARQL is based on the RDF metamodel, these
fundamental questions of how RDF data is named and ac-
tionable on the Web level needs to be resolved on the RDF
level, but we propose to first use an implementation ap-
proach that will put a naming layer on top of an RDF store
in an attempt to expose the store’s contents in ways more
aligned with Web architecture.

4. TOWARDS A RESTFUL SOLUTION

4.1 Potential Solutions

To overcome the above discussed issues, we propose to
use named graphs (NG)3 to identify information units. For
certain RDF serializations such as RDFa, there is an implicit
NG available (the URI of the hosting HTML document is the
NG), but this is not true for all serializations of RDF data.
We will hence operate under the following assumptions:

• Every RDF triple is in a NG; also the default graph
has a URI. It is up to the back-end to decide how to
assign triples to NGs; this can be based on explicit as-
signments, rule-based assignments such as authorship
or ownership, or algorithmic decisions such as explicit
triples vs. inferred triples.

• NG URIs are under the control of the SPARQL service,
so that the data made available at the URIs can be
interacted with using HTTP methods.

• Serializations of NGs can use any representation that
allows interactions with the data in the NG; these can
be various RDF serialization formats, as well as non-
RDF formats such as XML or JSON.

• The mapping between SPARQL and exposed serial-
izations must be bijective to ensure a lossless trans-
formation in both directions, or if there is some loss of
information (such as losing sequence information when
going from XML to RDF), it must be guaranteed that
this information is not relevant for the RDF model.

In a first attempt, we have identified the following possible
solutions for a RESTful mapping of SPARQL forms:

1. Information unit-based: One NG per information
unit (say, a book, a person, etc.). This option is easy
to implement, however the chosen granularity might
be to coarse-grained, and hence inefficient for large-
scale update operations. This option also depends on
concepts to be explicitly identified and exposed, which
might be appropriate in some scenarios, but might be
too static and inflexible in others.

2. Subject-level: The subject resource is used as the
HTTP resource. The advantage here is that there is
no overhead concerning NG, however this (i) does not
address RDF blank nodes, and (ii) it enforces an all or
nothing operation on the subject level.

3. Triple-level: Every RDF triple is in a NG on its own
(and can additionally be in an NG of an information
unit it belongs to). This solution offers the advantage
that all operations can be carried out effectively, how-
ever the overhead can be enormous for a huge number
of triples.

4.2 An Early Demonstrator
To this end we have implemented a demonstrator using

Jersey4, an open source JAX-RS (JSR 311) reference imple-
mentation. We have implemented the first option (informa-
tion unit-based solution) in a client/server setup and tested

3http://www.w3.org/2004/03/trix/
4https://jersey.dev.java.net/

it with social network data represented in the Friend-Of-A-
Friend (FOAF) vocabulary. See also Figure 2 for screen-
shots. The source code of our demonstrator is available on-
line5.

In the current version of the demonstrator we have imple-
mented SELECT, INSERT, and DELETE. An exemplary mapping
for a SPARQL INSERT is shown in listing 1. Based on the
inserted data, a follow-up SPARQL SELECT and its RESTful
mapping is given in the code fragment in listing 2.

1 INSERT INTO
2 <http :// localhost :8083/ sparestfulql /default/erik > {
3 <http :// http :// dret.net/netdret/foaf.rdf#me>
4 <http :// xmlns.com/foaf /0.1/ knows >
5 <http ://sw -app.org/mic.xhtml#i> .
6 }
7

8 PUT http :// localhost :8083/ sparestfulql/default/erik
9

10 <http :// http :// dret.net/netdret/foaf.rdf#me>
11 <http :// xmlns.com/foaf /0.1/ knows >
12 <http ://sw -app.org/mic.xhtml#i> .

Listing 1: An exemplary RESTful SPARQL
mapping for INSERT.

1 SELECT ?who ?whom
2 FROM NAMED
3 <http :// localhost :8083/ sparestfulql /default/erik >
4 {
5 ?who <http :// xmlns.com/foaf /0.1/ knows > ?whom .
6 }
7

8 GET http :// localhost :8083/ sparestfulql/default/erik?
9 query=SELECT +%3 fwho +%3 fwhom+FROM+NAMED +%3c
10 http%3a%2f%2 flocalhost %3a8083%2 fsparestfulql %2f
11 default %2ferik%3e+%7b%0a+%3 fwho+
12 %3chttp%3a%2f%2 fxmlns.com%2f
13 foaf%2f0.1%2 fknows %3e+%3 fwhom+.

Listing 2: An exemplary RESTful SPARQL
mapping for SELECT.

Though the experiments with our demonstrator are en-
couraging, they also highlight issues with this approach. For
example, how should one deal a SPARQL DELETE? Obvi-
ously, the intention is to remove the referred triples, how-
ever, this contradicts with the HTTP semantics, which are
about removing the entire resource itself.

5. CONCLUSIONS
In this position paper we have discussed the RESTful ap-

proach and highlighted issues with SPARQL in this respect.
We have indicated potential solutions and started to work
on a demonstrator that allows us to experiment with poten-
tial solutions. We aimed to tackle the high level mismatch
between a REST API and one based on a query/update
language with its three dimensions: (i) resources, (ii) verbs,
and (iii) state transfer, with a strong focus on the first one.
Regarding verbs we note that one of the defining charac-
teristics of the RESTful approach is that the verbs of the
interaction are given by HTTP, that is, in particular GET ,
PUT , POST , and DELETE . This contrasts to the RPC-style,

5http://bitbucket.org/mhausenblas/sparestfulql/

Figure 2: Screen-shot of the Demonstrator for information unit-based RESTful SPARQL mapping.

where the verbs are defined as methods by the developers
and to query/update languages where the verbs are part of
the query/update language. If these mismatches are not
addressed, this leads to redundant information and ambigu-
ous requests. Concerning the “state transfer”: in REST, re-
source states a transferred between client and server, unlike
the situation with the SPARQL protocol where queries/up-
dates and responses are send between client and server. A
RESTful change to an RDF repository might, for example,
send a new NG as RDF/XML as a PUT request to some
URI. These issues are subject to further research.

From the architecture perspective, the biggest issues around
a more RESTful design of SPARQL are deeply intertwined
with the way of how RDF handles identify and granularity
of RDF data, and beyond our experimental implementation,
we hope that our work informs and influences the design of
SPARQL itself (making named graphs a more central part of
the language design) and maybe even RDF (adding concepts
such as named graphs to the basic metamodel of RDF).

6. REFERENCES
[1] Kendall Grant Clark, Lee Feigenbaum, and

Elias Torres. SPARQL Protocol for RDF. World
Wide Web Consortium, Recommendation REC-rdf-
sparql-protocol-20080115, January 2008.

[2] Roy Thomas Fielding and Richard N. Taylor.
Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology, 2(2):115–
150, May 2002.

[3] M. Hausenblas. Exploiting Linked Data to Build
Web Applications. IEEE Internet Computing,
13(4):68–73, 2009.

[4] M. Hausenblas. Linked Data Applications. First
Community Draft, DERI, 2009.

[5] Kjetil Kjernsmo and Alexandre Passant.
SPARQL New Features and Rationale. World Wide

Web Consortium, Working Draft WD-sparql-features-
20090702, July 2009.

[6] Eric Prud’Hommeaux and Andy Seaborne.
SPARQL Query Language for RDF. World Wide Web
Consortium, Recommendation REC-rdf-sparql-query-
20080115, January 2008.

[7] Leonard Richardson and Sam Ruby. RESTful
Web Services. O’Reilly & Associates, Sebastopol, Cal-
ifornia, May 2007.

[8] J. Umbrich, M. Hausenblas, P. Archer,
E. Hammer-Lahav, and E. Wilde. Discovering Re-
sources on the Web. Technical Report, DERI, 2009.

[9] Erik Wilde. What are you talking about? In Pro-
ceedings of the 2007 IEEE International Conference
on Services Computing, pages 256–261, Salt Lake
City, Utah, July 2007.

[10] Erik Wilde. Feeds as Query Result Serializations.
Technical Report 2009-030, School of Information, UC
Berkeley, Berkeley, California, April 2009.

