
The Plain Web

Erik Wilde
School of Information

UC Berkeley

dret@berkeley.edu

ABSTRACT
The Web has become a popular starting point for many inno-
vations targeting infrastructure, services, and applications.
One of the challenges of today’s vast Web landscape is to
monitor ongoing developments, put them into context, and
assess their chances of success. One of the main virtues of a
more scientific approach towards the Web landscape would
be a clear differentiation between approaches which build
on top of the infrastructure of the Web, with little embed-
ding into the landscape itself, and those that are intended
to blend into the Web, becoming a part of the Web itself.
One of the main challenges in this area is to understand and
classify new developments, and a better understanding of
various dimensions of Web technology design would make it
easier to assess the chances of success of any given develop-
ment. This paper presents a preliminary classification, and
presents arguments how those factors influence the chance
for success.

1. INTRODUCTION
The Web’s success has been analyzed in a variety of ways,

and most likely cannot be attributed to one single cause.
The rising availability of the Internet, declining computer
costs, the demand to share information in platform-inde-
pendent ways, and the simple technologies based on loose
coupling were all contributing factors. Many of these fac-
tors are outside of the “engineering realm” of the Web, the
Web just “happened to be there at the right time.” And
yet, the Web’s simplicity, its roots in the question of how to
solve pragmatic information sharing issues, and the design
that was the very opposite of the heavyweight approaches
that were proposed for similar application areas from the
communications systems [29] and hypermedia [26] commu-
nities, were all critically contributing factors to its success.

This paper argues that the Web’s simplicity still is its
most important asset, and that recent developments in Web
technologies as well as future directions should take this into
consideration. Specifically, this paper identifies as two im-
portant approaches in Web technology development the ap-
proaches of revolution vs. evolution. The revolutionary ap-
proach often simply builds on the Web as an existing and
convenient transport infrastructure, placing an entirely new
layer of functionality on it. In contrast, the evolutionary
approach attempts to improve existing Web technologies in-
crementally, often at the price of having to deal with back-
wards compatibility and interoperability in a loosely coupled
system.

In discussions about future directions for the Web, both

Copyright is held by the author/owner(s).
Web Science Workshop at WWW2008, April 22, 2008, Beijing, China.
.

approaches are adamantly defended with many arguments,
and the debate around these approaches often is heated and
controversial. One of the main reasons for this is that any
development in a technological landscape as large and as
economically significant as the Web not only has techni-
cal implications and consequences, but also involves many
commercial interests. Furthermore, given the amount of re-
search funding that goes into various areas associated with
the Web, money and careers are at stake. This paper is not
an approach to look into this wider field of non-technical de-
pendencies of Web technology development, but any inquiry
of Web technology development should take these factors
into account.

This paper focuses on the contrast of the revolutionary
(Section 2) vs. the evolutionary (Section 3) approach of ad-
vancing the Web. For each of these approaches, some exam-
ples are presented which illustrate typical representatives.
Following up with a case study (Section 4), the paper then
makes a case for the evolutionary approach called the Plain
Web (Section 5). Evolving the Web in a far-sighted and
cleanly engineered way should be preferred over solutions
which build entire new technology landscapes that do not
integrate well into the Web and are only accessible through
entirely new toolsets. Based on this approach of limiting the
Web to evolutionary developments, Section 5 then concludes
the paper with a brief sketch of possible research directions,
which would help to better understand how Web develop-
ment is most likely to avoid costly errors.

2. WEB REVOLUTION
The Web’s success has clearly shown that it filled a for-

merly unoccupied gap in the communications landscape, but
its simplicity also often is perceived as a deficiency, rather
than a property that might have been and still is a con-
tributing factor to its success. The limitations of the Web’s
basic features in terms of content design and semantics, and
its ability to serve as a platform for machine-to-machine in-
teractions, have led to numerous developments to extend the
Web’s capabilities.

The following sections provide a more detailed look at
three fields where revolutionary attempts were proposed to
“improve the Web.” A common theme of these revolution-
ary approaches is that they use the Web mainly as a trans-
port system. So instead of trying to integrate into the exist-
ing way of how something is done the Web, they introduce
something entirely new that is supposed to completely take
over that area.

Another commonality for most of these approaches is a
fairly monolithic solution. A large problem area is identi-
fied, and then some solution is created which intends to be
general and powerful enough to solve problems in that area.



Because the problem area tends to be large and complex,
the presented solution also tends to be large and complex.

2.1 Content
One of the early complaints about the Web was the sim-

plicity of its main content types. Today’s combination of
HTML, CSS, and advanced scripting1 allow rather sophisti-
cated Web design, but earlier versions of these technologies
and earlier browsers were limiting Web publishing to a basic
set of features, looking to many like a return to the days of
character-based terminals.

In particular, when it comes to media types’ variety and
features, Web technologies and browsers provide a rather
small set of options. And from the perspective of Web de-
signers, who often only get in touch with Web technologies
through tools, there still exists a rather popular idea that
the basic Web technologies are just a starting point, and
that more sophisticated, multimedia-oriented technologies
are the logical next step of Web development. This world
view often manifests itself in building entire sites in Flash
or other technologies which essentially turn the Web into a
transport infrastructure for a proprietary media player.

Two activities that were initiated by the W3C in the area
of richer media types were the Synchronized Multimedia In-
tegration Language (SMIL) [17] and Scalable Vector Graph-
ics (SVG) [13]. Both technologies did not succeed as a uni-
versally used content type on the Web, and there probably is
not just one reason for that. One important factor was the
development of these formats as standalone formats, with
little connections to the existing infrastructure. To this day,
there are various ways of embedding SVG into HTML, and
each of these ways has its own peculiarities and side-effects.
SMIL, on the other hand, created a sophisticated language
for synchronizing multimedia presentations, but some of the
center pieces of those presentations, audio and video content,
were never standardized, and today’s de facto standard for
playing these media types is to use proprietary media play-
ers.

So instead of slowly developing richer content from the
ground up, these technologies were developed with little con-
nections to the existing fabric of the Web, and ultimately
failed.

Another important mechanism for revolutionizing content
on the Web are proprietary runtime environments, which
support and use a lot of Web technologies, but are not
browsers. These are increasingly referred to as Rich In-
ternet Application (RIA), a term which initially was used
for browser-based content using advanced Web technologies
such as scripting and Ajax (described in Section 3.1). The
proprietary RIAs also represent revolutionary approaches,
arguing that they provide developers a richer environment
for developing applications,2 and that they support features
which are not available in browser-based applications.3

1All of these technologies are considered in more detail in
Section 3.1.
2It is interesting to note that this notion entirely depends
on the definition of rich. If rich means a better development
environment and more functionality in the runtime environ-
ment, this is true. If rich means fully embedded into the
fabric of the Web and able to access and be accessed in that
environment, it is not true.
3A popular example for this is the ability to work off-
line, which is more or less non-existent in browsers (though
frameworks such as Google Gears are beginning to change

Another area of content-related revolution is the area of
schema languages. XML Schema [32] introduced a powerful
and complex schema language with its own data modeling
layer. While the XML structures described by that lan-
guage can be accessed using basic XML tools, there is no
standard for how the complex model of a schema itself can
be accessed. As a consequence, schemas are opaque for Web
technologies, and only few of the language’s various features
are frequently used [5]. There have been some experiments
to make the XML Schema model more accessible [34], but
the current revision of the language [15] adds more features
to the language, a step in the opposite direction.

2.2 Semantic Web
The Semantic Web [4] aims to turn the Web into a machine-

understandable Web. It introduces a model for making
statements, the Resource Description Framework (RDF) [21],
and layers on top of this languages (such as RDF Schema [8]
or the Web Ontology Language (OWL) [31]) which can be
used to define and constrain the concepts which are used in
these statements.

The Semantic Web builds a number of layers on top of
the Web infrastructure, and most of the technologies are
entirely new. The only major connection between the Web
itself and the Semantic Web is the Uniform Resource Identi-
fier (URI) [3], which is used for identification in both mod-
els. Even for this crucial link between the Web and the
Semantic Web, there so far is little actual connectivity; the
assignment, definition, management, description, publish-
ing, and discovery of URIs rarely work outside of closed
environments. As an example, many basic RDF examples
still assume the ontological equivalence of persons and their
home page or email, which points to the basic problem of
how identity is handled.

Despite predictions of the ultimate success for the Seman-
tic Web [30], so far there is little use of it outside of the
(arguably large) communities of academia and commercial
players having direct investments in the technology. This
does not necessarily mean that there will not be eventual
success; but regardless of that ultimate outcome, one could
at least ask why the technology has taken so much longer to
catch on and gain momentum than the much more limited
XML. The fact that any work in the Semantic Web realm
requires a complete new toolset most likely has made it less
likely for potential users to start using it, and better support
for a more gradual transition probably would have helped
to improve the adoption rate.

2.3 Web Services
Originally, the term “Web Service” only referred to ser-

vices described by an interface described in the Web Services
Description Language (WSDL) [9], which are invoked using
messages based on SOAP [27]. Repeating the pattern of
the above examples, this model of a Web service reduced the
Web to a transport infrastructure for XML-encoded message
exchanges. Subsequently, additional standards were layered
on top of this model, in many cases replicating functionality
of a basic networking protocol stack [19].

Web services are attractive for middleware providers, be-
cause they allow them to simply extend their existing soft-

this). But it is inevitably true that the Web as a runtime en-
vironment is limited, but as this paper argues, there usually
is a high price associated with creating something entirely
new to escape these limitations.



ware products with new stub-generating software. Cus-
tomers using these updated software suites then are able
to use Web services without changing anything in their ex-
isting systems, simply by generating new stubs.

Web services in the WSDL/SOAP flavor require an en-
tirely new toolset, and while they do employ some Web
technologies besides the simple transport service, the syn-
ergies between the traditional Web and WSDL/SOAP Web
services are slim. In a way comparable to the Semantic
Web, within certain user communities, there is a real bene-
fit to this technology, but this benefit often does not extend
beyond that community, because there is no graceful path
leading to the new technology.

3. WEB EVOLUTION
The important common theme for all the examples dis-

cussed in the previous section is that they assume that users
will fully adopt the new technology in an “all or none” fash-
ion, with no middle ground for easier migration. This sec-
tion contrasts this philosophy with a more evolutionary ap-
proach, where the design of the new technology is informed
and influenced by assumptions about backwards compati-
bility and the ability to migrate to the new technology with
a graceful path to a new toolset.

3.1 Content
One of the biggest success stories of Web technologies is

the Extensible Markup Language (XML) [7], which origi-
nally was intended to be used for Web content [28], but has
become a universal language for structured data. One of
the big influential factors was XML’s simple tree model and
the ability to work with that through the Document Object
Model (DOM) [22]. These were both well-known to HTML
users as an established API at the time XML was invented.
XML’s lack of semantics make it a less ambitious approach
than the Semantic Web, but the adoption rate demonstrated
that such a simple approach can be successful.

For Web content intended for humans, the big develop-
ments were not so much newer and richer datatypes, but
instead the development of the browser as an application
development platform. Better DOM conformance and the
XMLHttpRequest [33] method of enabling scripts to commu-
nicate with a server (often referred to as Ajax ) were the
main factors of that development. The ability to gradually
upgrade a Web page from static HTML to a more dynamic
version provided content providers with a graceful path to
a more modern Web presence.

With regard to the core standards, the development of
HTML 5 [16]4 also is a evolutionary way of improving HTML.
HTML’s notoriously weak structuring and form mechanisms
are improved in HTML 5, so that many things which today
are implemented by scripting libraries will be supported by
the browser itself. This way, HTML is being upgraded in
a way which reflects current practices, thereby reducing the
need for scripting and improving HTML as a declarative
language with features grounded in existing practice.

Another area of evolutionary changes in the area of Cas-
cading Style Sheets (CSS) [25], a language which has been
iteratively developed over the last decade. CSS’s features
have progressed from a basic vocabulary intended to replace

4With that development, the more ambitious XHTML
2.0 [2] and XForms [12] approaches to re-create content and
forms will probably not gain widespread adoption.

HTML’s basic formatting, to a sophisticated language for
designing two-dimensional layouts. While the current devel-
opments mainly focus on scrollable screen and print media,
HTML has evolved to become a decent language for de-
scribing paged, reflowable, and interactive content, and the
current Advanced Layout [6] and Paged Media [23, 24] drafts
are pointing into that direction. Once these mechanisms are
extended to cover not only printed media (which currently is
their main application area), but interactive paged media as
well, HTML could become the standard language for e-book
content, well-poised to unify a currently highly fragmented
market dominated by proprietary formats.

Regarding the question of schema languages briefly men-
tioned in Section 2.1, evolutionary approaches include a
modular approach to schema modeling (using lightweight
languages for specialized tasks), and simpler schema lan-
guages such as Schematron [18], which can be implemented
using existing Web technologies.

3.2 Semantic Web
The need for more semantics on the Web is something

almost everybody can agree on, and the evolutionary al-
ternative to the Semantic Web initiative is the bottom-up
development happening in the area of microformats [20].
While these formats have no common foundation and no
underlying framework, they address concrete needs of exist-
ing user communities. Microformats evolve out of the need
to have a semantic representation for some (often narrow)
set of semantics, and they use various hooks in HTML to
reuse some of HTML’s weak semantics, extending them with
a more precisely defined way of how to encode data.

The biggest disadvantage of microformats is that there is
no common framework, so different microformats often use
different approaches for representing data. This makes it
hard to combine them, unless a Web page is designed in
advance to support all the different representations. The re-
cently introduced RDF in Attributes (RDFa) [1] syntax ad-
dresses some common microformat shortcomings and builds
a promising bridge between the more formal world of the Se-
mantic Web as introduced in Section 2.2, and the lightweight
world of microformats.

Another development in that area is Gleaning Resource
Descriptions from Dialects of Languages (GRDDL) [10], it
defines a method to extract RDF descriptions from any kind
of well-defined structure in a Web page. While GRDDL lay-
ers a unifying method on top of the variety of ways how
semantics can be encoded in Web pages, it does not ex-
pose this information in a lightweight format, but instead
directly as RDF. The general approach of GRDDL, how-
ever, is an interesting one, because it allows any reasonably
well-defined structure to be transformed into a unified re-
presentation, using simple transformations. While currently
GRDDL is defined to directly produce RDF, it could be eas-
ily adapted to produce something that is both well-defined
and lightweight, such as RDFa.

3.3 Web Services
With the emergence of more advanced and interactive con-

tent (as described in Section 3.1), and in particular with the
advent of Ajax, the ability to access data on a server became
an important part of Web-based applications. For this sce-
nario, the Web Service technologies described in Section 2.3
are rarely used, because the overhead of the envelope format
is considered a disadvantage. While Ajax has been named



because applications are using XML for dynamic content, an
even simpler technology is gaining increasing support in this
area: the JavaScript Object Notation (JSON) [11], which al-
lows scripting code to directly use received data.

Outside of the Ajax application area, there also is a com-
petitor for the more heavyweight Web Services approaches.
The concept of Representational State Transfer (REST) [14]
has become a popular way of building Web services. REST
is based on the idea that Web services should reuse existing
components of Web architecture (such as protocol seman-
tics), rather than building additional layers on top of it.

The debate around the heavyweight Web Services ap-
proach described in Section 2.3 and the more lightweight
RESTful approach is still ongoing. For a discussion of the
evolution of the Web and Web science, it is interesting to
note, however, that most arguments in favor of the heavy-
weight approach are based on more tightly coupled scenar-
ios. Even the most ardent REST advocates would rarely
claim that REST is the best way to architect every dis-
tributed system — it just is the more appropriate choice for
loosely coupled scenarios.

4. CASE STUDY: URI SCHEMES
This section presents an example in which the perspectives

described in Sections 2.1 and 3.1 lead to different views of the
further development of the Web. The question of whether
URIs have semantics or not has been discussed extensively.
In a more classical view, URIs have some semantics because
the URI scheme and maybe the URI itself can be used to
“understand” the nature of the resource. On the Semantic
Web, such a weak way of representing semantics is not nec-
essary and in fact would collide with the goal to represent
semantics using RDF.

From the Semantic Web perspective, a URI is just a name.
For proponents of the Semantic Web, new URI schemes are
not necessary and not even desirable, because semantics of
resources should not be reflected in their URIs, but in RDF
statements about them. In this example, the goals of the
plain Web and the Semantic Web conflict, and the question
which of the two “perspectives” of URIs should be given
preference is an important decision. The W3C TAG recom-
mends that Semantic Web compliant servers use a special
HTTP response (the 303 code) to indicate that a resource
may not be an HTTP resource.

This design decision makes it hard for simpler semantics
to emerge. If RDF is exclusively used to represent seman-
tics, and a 303 HTTP code signals that additional semantics
about an HTTP resource might be available, there is no way
for simpler Web applications to use URI schemes with non-
HTTP semantics to identify and act on resources which are
not HTTP resources.

While the argument presented here is simplified for this
paper, the important issue is to point out that in that case,
the perspective of the Web’s assumed development shapes
the decisions of Web developments today. It is of course
still open to debate whether new URI schemes should be
deployed or not, but in the interest of an open discussion
it might be interesting to clearly identify the underlying as-
sumptions of policies and guidelines.

5. WEB SCIENCE
This paper essentially is a plea for the Plain Web, which

we conceive as a Web that evolves gradually and with atten-

tion to backwards compatibility and ease of transition. This
should of course not prevent new developments on the Web,
but whenever something is planned to become a part of the
Web, rather than an application of the Web, such a perspec-
tive of the Web should be considered important. One of
the important tasks of Web Science should be to develop a
framework to distinguish between evolution of the Web and
on the Web.

Seen from this perspective, one of the main challenges of
Web science is that it is a lot about not doing things, or
doing things in less perfect or complex ways. This is one
of the challenges of the development of Web technologies
in general: Many developments are not challenging enough
from the point of view of computer science, so they are not
tackled by the computer science community. Development
of Web technologies is often regarded as engineering, not as
science. This view has a lot of validity, but ignores the fact
that good engineering also needs grounding in principles and
methods, and so far little work is done in the area of “how
to build open and extensible loosely coupled systems.”

For a more scientific approach towards the development of
Web technologies, three of the most important design axes
can be identified. As in all good engineering, design is a
tradeoff between costs, constraints, and requirements, and
the goal of a science of the Web should be to work towards
evaluation criteria and best practices for the following areas:

• Complexity ↔ Simplicity: Using the popular 80/20
principle, a design should trade completeness and com-
plexity for simplicity. Simplicity is the single most
important feature of all successful Web technologies,
providing the ability to use simple or even no tools to
start using a new technology.

• Cleanliness ↔ Backwards Compatibility: While new
solutions often can be designed in a cleaner and more
elegant way, supporting backwards compatibility is im-
portant. Not only does it support migration on a tech-
nical level, it also makes it easier for developers and
users to move towards a new technology.

• Specificity ↔ Reuse: Building solutions for specific
problems is easier, because the problem is better de-
fined. The Web, however, should be as unspecific as
possible, which means that any hidden assumptions in
a proposed solution should be made clear, so that this
dimension can be better understood.

These items are only rough descriptions of a set of design
axes for a science for the Web. The important observation
is that many developments in the last few years have not
made the design choices among these axes clear. A com-
mon scenario is that some proposed solution starts with a
single sentence such as “if everybody on the Web started
using/supporting technology X, then . . .”, and this assump-
tion is a rather strong one.

The Web’s simplicity, and the ways in which the most
fundamental technologies interact, certainly is not as im-
pressive in its structural complexity as many core sciences.
But designing for this simplicity, and seeing this simplicity
not as just a starting point, but as a virtue in itself, has
its own interesting challenges. These might (and probably
should) not be the same as those of the core sciences, and
the most rewarding task of a science of the Web from the



technical perspective would be to embrace simplicity, not to
try to overcome it.

6. CONCLUSIONS
This paper argues for a science of the Web which should

emphasize evolutionary development and simplicity over rev-
olutionary approaches and complexity. While the term Web
Engineering never was used to describe “how to engineer the
Web”, but instead refers to“engineering for Web-oriented
information systems,” the most challenging and rewarding
task of a science of a Web from the technical perspective
would be to develop Web Engineering in its core sense —
how to engineer the Web and not for the Web — into a
well-described and well-defined discipline. Many Web tech-
nologies are driven by community development and see sur-
prisingly little involvement from the academic side, which
partly can be attributed to the fact that this core “Web
Engineering” often is not regarded as being “real science.”

In order to better understand and control the Web’s fu-
ture development, this “new Web engineering” should pro-
vide a framework for various design axes of Web technolo-
gies, against which new and ongoing developments could be
measured and benchmarked. A system as big and widely
used as the Web will always have a large share of trial-and-
error development, but the development of a more system-
atic evaluation and development of Web technologies would
be likely to reduce the overall failure rate.

7. REFERENCES
[1] Ben Adida, Mark Birbeck, Shane McCarron, and Steven

Pemberton. RDFa in XHTML: Syntax and Processing — A
Collection of Attributes and Processing Rules for Extend-
ing XHTML to Support RDF. World Wide Web Consortium,
Working Draft WD-rdfa-syntax-20080221, February 2008.

[2] Jonny Axelsson, Mark Birbeck, Micah Dubinko, Beth Epper-
son, Masayasu Ishikawa, Shane McCarron, Ann Navarro, and
Steven Pemberton. XHTML 2.0. World Wide Web Consor-
tium, Working Draft WD-xhtml2-20060726, July 2006.

[3] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter.
Uniform Resource Identifier (URI): Generic Syntax. Internet
RFC 3986, January 2005.

[4] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The
Semantic Web. Scientific American, 284(5):34–43, May 2001.

[5] Geert Jan Bex, Wim Martens, Frank Neven, and Thomas
Schwentick. Expressiveness of XSDs: From Practice to The-
ory, There and Back Again. In Proceedings of the 14th Inter-
national World Wide Web Conference, pages 712–721, Chiba,
Japan, May 2005. ACM Press.

[6] Bert Bos. CSS Advanced Layout Module. World Wide Web
Consortium, Working Draft WD-css3-layout-20070809, August
2007.

[7] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve
Maler, and François Yergeau. Extensible Markup Language
(XML) 1.0 (Fourth Edition). World Wide Web Consortium,
Recommendation REC-xml-20060816, August 2006.

[8] Dan Brickley and Ramanathan V. Guha. RDF Vocabulary De-
scription Language 1.0: RDF Schema. World Wide Web Con-
sortium, Recommendation REC-rdf-schema-20040210, February
2004.

[9] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and
Sanjiva Weerawarana. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. World Wide Web
Consortium, Recommendation REC-wsdl20-20070626, June
2007.

[10] Dan Connolly. Gleaning Resource Descriptions from Dialects
of Languages (GRDDL). World Wide Web Consortium, Rec-
ommendation REC-grddl-20070911, September 2007.

[11] Douglas Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). Internet RFC 4627, July
2006.

[12] Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V.
Raman. XForms 1.0. World Wide Web Consortium, Recom-
mendation REC-xforms-20031014, October 2003.

[13] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specifi-
cation. World Wide Web Consortium, Recommendation REC-
SVG-20010904, September 2001.

[14] Roy T. Fielding and Richard N. Taylor. Principled Design of
the Modern Web Architecture. ACM Transactions on Internet
Technology, 2(2):115–150, May 2002.

[15] Shudi Gao, C. Michael Sperberg-McQueen, Henry S. Thomp-
son, Noah Mendelsohn, David Beech, and Murray Maloney.
W3C XML Schema Definition Language (XSDL) 1.1 Part 1:
Structures. World Wide Web Consortium, Working Draft WD-
xmlschema11-1-20070830, August 2007.

[16] Ian Hickson and David Hyatt. HTML 5 — A Vocabulary and
Associated APIs for HTML and XHTML. World Wide Web
Consortium, Working Draft WD-html5-20080122, January
2008.

[17] Philipp Hoschka. Synchronized Multimedia Integration Lan-
guage (SMIL) 1.0 Specification. World Wide Web Consortium,
Recommendation REC-smil-19980615, June 1998.

[18] International Organization for Standardization. Informa-
tion Technology — Document Schema Definition Languages
(DSDL) — Part 3: Rule-based Validation — Schematron.
ISO/IEC 19757-3, April 2006.

[19] Mario Jeckle and Erik Wilde. Identical Principles, Higher
Layers: Modeling Web Services as Protocol Stack. In Proceed-
ings of XML Europe 2004, Amsterdam, Netherlands, April
2004.

[20] Rohit Khare and Tantek Çelik. Microformats: A Pragmatic
Path to the Semantic Web. In Poster Proceedings of the 15th
International World Wide Web Conference, Edinburgh, UK,
May 2006. ACM Press.

[21] Graham Klyne and Jeremy J. Carroll. Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax. World
Wide Web Consortium, Recommendation REC-rdf-concepts-
20040210, February 2004.

[22] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood,
Gavin Thomas Nicol, Jonathan Robie, Mike Champion, and
Steven Byrne. Document Object Model (DOM) Level 3 Core
Specification. World Wide Web Consortium, Recommendation
REC-DOM-Level-3-Core-20040407, April 2004.

[23] Håkon Wium Lie. CSS3 Module: Generated Content for Paged
Media. World Wide Web Consortium, Working Draft WD-css3-
gcpm-20070504, May 2007.

[24] Håkon Wium Lie and Melinda Grant. CSS3 Module: Paged
Media. World Wide Web Consortium, Working Draft WD-css3-
page-20061010, October 2006.

[25] Eric A. Meyer and Bert Bos. CSS3 Introduction. World Wide
Web Consortium, Working Draft WD-css3-roadmap-20010523,
May 2001.

[26] David E. Millard and Martin Ross. Web 2.0: Hypertext by
Any Other Name? In Uffe Kock Wiil, Peter J. Nürnberg,
and Jessica Rubart, editors, Proceedings of the Seventeenth
ACM Conference on Hypertext and Hypermedia, pages 27–30,
Odense, Denmark, August 2006. ACM Press.

[27] Nilo Mitra and Yves Lafon. SOAP Version 1.2 Part 0: Primer
(Second Edition). World Wide Web Consortium, Recommenda-
tion REC-soap12-part0-20070427, April 2007.

[28] Yuri Rubinsky and Murray Maloney. SGML on the Web:
Small Steps Beyond HTML. Prentice-Hall, Upper Saddle
River, New Jersey, February 1997.

[29] Andrew L. Russell. ’Rough Consensus and Running Code’ and
the Internet-OSI Standards War. IEEE Annals of the History
of Computing, 28(3):48–61, 2006.

[30] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Se-
mantic Web Revisited. IEEE Intelligent Systems, 21(3):96–
101, March 2006.

[31] Michael K. Smith, Chris Welty, and Deborah L. McGuinness.
OWL Web Ontology Language Guide. World Wide Web Con-
sortium, Recommendation REC-owl-guide-20040210, February
2004.

[32] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema Part 1: Structures Second
Edition. World Wide Web Consortium, Recommendation REC-
xmlschema-1-20041028, October 2004.

[33] Anne van Kesteren. The XMLHttpRequest Object. World
Wide Web Consortium, Working Draft WD-XMLHttpRequest-
20080415, April 2008.

[34] Erik Wilde and Felix Michel. SPath: A Path Language for
XML Schema. In Poster Proceedings of the 16th International
World Wide Web Conference, pages 1343–1344, Banff, Al-
berta, May 2007. ACM Press.


	Introduction
	Web Revolution
	Content
	Semantic Web
	Web Services

	Web Evolution
	Content
	Semantic Web
	Web Services

	Case Study: URI Schemes
	Web Science
	Conclusions
	References

