
Surfing the API Web: Web Concepts
Erik Wilde

API Academy, CA Technologies

Zürich, Switzerland

erik.wilde@ca.com

ABSTRACT
TheWeb is based on numerous standards that together make up the

surface of the Web: By knowing and supporting those standards,

problems can be solved in well-known ways. This general design

pattern on the Web applies to APIs in the very same way as it does

to the human Web: By using an (evolving) set of standards, API

developers benefit by not having to reinvent the wheel, and devel-

opers benefit by the same problem being solved in the same way

across a variety of APIs. The evolving set of standards for Web APIs

can be regarded as a set of building blocks or vocabularies for API

design.Web Concepts is a site (webconcepts.info) and a repository

(github.com/dret/webconcepts) that can be used to manage how

within organizations these building blocks are used, thus helping to

establish a Web API design culture. The main idea of Web Concepts

is to promote reuse of existing standards and technologies, and to

therefore make it easier for teams to understand which options are

available generally speaking, and maybe which ones are popular

choices within their organization.

CCS CONCEPTS
• Information systems → Web services; • Software and its
engineering → Documentation; • General and reference →

Computing standards, RFCs and guidelines;

ACM Reference Format:
Erik Wilde. 2018. Surfing the API Web: Web Concepts. InWWW ’18 Com-
panion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3184558.3188743

1 INTRODUCTION
Web APIs have become an important cornerstone of the Web: they

expose services in a programmable way in the similar way as regular

Web pages expose services in a human-accessible way.

One of the major differences between Web APIs and the human

Web is in terms of diversity and complexity. On the human Web,

access is (almost) always through a Web browser. While HTML5

and its support for much more powerful browser applications has

resulted in a substantial increase of technical complexity
1
, diversity

is still relatively modest with most Web pages assuming a certain

minimal support of CSS and scripting in browsers, and ideally

having some fallback strategy when these assumptions are not met.

1
The HTML5 set of specifications and the CSS set of specifications now are well over

200 specifications combined.

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5640-4/18/04.

https://doi.org/10.1145/3184558.3188743

The picture is rather different for Web APIs, where there are

no standards that are universally accepted and supported, other

than HTTP being used as the protocol for connecting clients and

servers. The rift sometimes goes very deep (such as the difference

of opinion whether Web services should better use RPC or REST as

the fundamental architectural principle). However, while the details

of how Web APIs are designed often diverge, the fact remains that

there is some shared foundation because of the universal founda-

tional principles of resource identification via URI [1], and resource

interaction via HTTP [6].

Beyond the very foundations of URI/HTTP, the “language” of

APIs becomes more varied. Consider the simple question of how

structured data is represented: Popular metamodels for structured

data nowadays probably are XML [3], JSON [2], and RDF [4]. These

already require implementations to employ different toolsets, so

that they can parse and process structured data in these representa-

tions. But beyond that there often are standardized models at play

as well, either as container formats, or as building blocks that are

being used to build up larger vocabularies. One way or the other,

these models then also become part of the “language” of an API:

Users of the API have to understand them and work with them as

intended.

In addition to these representation languages, the Web also has

a large set of additional vocabularies that Web APIs can use to

design and expose their services. One popular example is HTTP

caching [5], which after the recent revision of HTTP/1.1 is not

part of the core specification anymore, but a separate one that

happens to define 5 HTTP header fields, and within its own “caching

language” an additional 12 HTTP cache directives (that are used

with the Cache-Control HTTP header field), and 7 HTTP warn codes
(that are used with the Warning HTTP header field).

This example of HTTP caching shows that there is a whole

additional “language” being defined by a specification (in this case

IETF’s RFC 7234 [5]) that Web APIs can utilize if they want to

improve the way how their resources can be used with advanced

caching features. Using this “caching language” has the typical two

main advantages of using standards:

• There is no need to reinvent the wheel if there is a standard

that already covers functionality/features that are supposed

to be exposed by a Web API.

• Developers working with the Web API do not have to learn

the specific way how the API solved that problem. If they

know the standard, they understand that aspect of the API,

and they can use existing tools and libraries that may exist

to support that standard.

Through the design of URIs and HTTP and many additional

standards, the Web is able to provide this sort of reuse in many

different places. This also highlight that while the Web is great

because it is built on the shared foundations of URI/HTTP, there

webconcepts.info
github.com/dret/webconcepts
https://doi.org/10.1145/3184558.3188743
http://html5-overview.net/
https://www.w3.org/Style/CSS/current-work
https://doi.org/10.1145/3184558.3188743


still are additional “languages” used on top of these that can help to

design better Web APIs, by allowing more reuse, and thus making

it easier for API designers to focus on the specific aspects of their

APIs that really do need specific design.

2 THE MYTH OF THE UNIFORM INTERFACE
As mentioned in the introduction, URI/HTTP is the shared founda-

tion of all Web APIs, and as such there is a foundational uniform
interface that is exposed by all Web APIs: When you know a URI

then you should be able to “follow your nose” by probing the re-

source via HTTP OPTIONS, and then continuing from there. While

this is true in theory, in the practice of Web APIs many different

standards come into play, as illustrated in the introduction.

Thus, for Web APIs it can be very useful for developers to know

which standards an API uses (or, using the notion of standards

as “building blocks of API languages”, which “vocabularies are

combined for defining a specific API”). What this means is that

beyond the fact that users can indeed explore an “API’s languages”

on the fly (for example, interact with all resources of it and keep

track of the various HTTP header fields in responses to get an idea

of the “HTTP header field language” of that API), this is ineffective

and makes it harder for developers to understand the API language.

For example, the HTTP header fields mentioned above are a

complex facet of Web architecture: There are around 200 different

header fields that are (semi-)officially specified and registered, and

there are many more that have been invented by specific Web APIs

and are only used in those APIs. So anyWeb API has many different

HTTP header fields it could use, and which ones it does use often

is not very easy to find out.

3 WEB API DESIGN CULTURE
This problem gets harder in API landscapes. Modern organizations

have many different teams working on many different APIs, and

each of those APIs is the result of a design exercise. With the rise

of Microservices, teams get explicitly encouraged to build the APIs

that best work for the products they are building.

Microservices try to balance the independence of teams to design

and build products, with the larger organizational goal of ending

up with an API landscape that has at least some minimal level of

coherence. The usual approach nowadays is different from the early

days of APIs and SOAP, where the main goal was to create unifor-

mity by standardizing on technologies and toolsets. Experience has

shown that this command-and-control approach was too limiting

for teams and resulted in slow API development and suboptimal

designs.

Microservices try to strike a balance between more indepen-

dence to increase team velocity, but to still provide teams with the

support they need to succeed. For example, a typical example of a

team designing a service would be that they might be interested

in how similar problems and APIs have been created within the

organization. This is asking for the design culture within an organi-

zation, and is useful both for the organization (teams can build on

established practice) and the teams (teams can build on previous

experiences).

In addition, this kind of shared design culture allows the organi-

zation to build tooling and support around shared “API languages”.

For example, if Web APIs use the same representations for home

documents or status reports, then it becomes much easier for the

organization to build tooling for entry points or status reports that

works across APIs. Establishing this Web API design culture thus

helps both the organization, and the individual teams.

Notice, though, that this design culture is fluid: It is the shared

set of practices (i.e., API building blocks) that get used by teams,

and like anything in IT, these things will change over time. Thus,

an ideal representation of the design culture would not just be a

static snapshot of the building blocks in use, but would capture

how their usage is trending over time.

4 WEB CONCEPTS
The main subject of this paper is Web Concepts. Web Concepts is a

collection of concepts that together make up a sizable part of the

design culture and practice of Web APIs. At the time of writing,

it captures 730 different values for 32 concepts. One example for

this is the concept of HTTP header fields, of which there are 191

different types. Other examples of concepts are HTTP status codes,
URI schemes, and media types.

The collection is necessarily incomplete, on the one hand because

for some of the concepts there is a very large set of registered values

that probably very rarely will get used in Web APIs (for example,

this is the case for media types), and on the other hand because

the current collection is based on published or draft specifications,

and in many cases, Web APIs add their private concepts but never

register or standardize them (such as specific HTTP header fields).

WebConcepts are available at webconcepts.info and onGitHub
as github.com/dret/webconcepts, but the main purpose of the

data is not so much to provide an authoritative overview of all of

the relevant concepts and values, but to serve as a starting point

for establishing design culture and practice within organizations.

We will take a closer look at how to reuse Web Concepts in

Section 7, and how to use it for tracking API landscape evolution

in Section 8. But first it is important to look at how the data is

organized, and how it represents the way in which Web concepts

are established.

5 WEB CONCEPTS MODEL
The fundamental model of Web Concepts is very simple: It assumes

that concepts and values for them are established by specifications.

As the site exists now, the specifications have been taken from a

few select organizations, and as the numbers of specifications show,

with a rather heavy bias on IETF and W3C:

• International Organization for Standardization (ISO): 3 Speci-
fications

• Internet Engineering Task Force (IETF): 214 Specifications
• Java Community Process (JCP): 1 Specification
• Organization for the Advancement of Structured Information
Standards (OASIS): 4 Specifications
• World Wide Web Consortium (W3C): 40 Specifications

That specific mix has been influenced by the fact that IETF and

W3C create many of the foundational specifications of the Internet

and the Web. This could look different if one would look at Web

APIs in a specific vertical, that may use numerous specifications

from an organization focusing on that vertical. This picture would

http://webconcepts.info
https://github.com/dret/webconcepts


also look different if it attempted to also represent the concepts and

values that may not be “proper specifications”, but are being used

across a variety of APIs anyway.

In order to account for this, Web Concepts treats these organi-

zations and their specifications as a configuration. It is easy for

new organizations to be added, and after doing so, specifications

by these organizations can be added, that define new concepts and

values. The main configuration for specifications concerns naming

conventions and ways in which they are accessible online and can

be identified by URI.

In the same way as organizations can be easily configured, the

same is true for concepts as well. At the time of writing, there are

32 concepts, and the number of values for these varies widely, as

can be seen here:

• HTTP Authentication Schemes (10)
• HTTP Cache Directives (15)
• HTTP Content Codings (10)
• HTTP Forwarded Parameters (4)
• HTTP Header Fields (191)
• HTTP Preferences (4)
• HTTP Range Units (3)
• HTTP Request Methods (39)
• HTTP Status Codes (62)
• HTTP Transfer Codings (7)
• HTTP Warn Codes (7)
• JSON Web Token Claims (8)
• JWT Confirmation Methods (4)
• Link Relations (98)
• Media Types (104)
• OAuth Access Token Types (2)
• OAuth Authorization Endpoint Response Types (2)
• OAuth Dynamic Client Registration Metadata (20)
• OAuth Extensions Errors (4)
• OAuth Parameters (26)
• OAuth Token Endpoint Authentication Methods (3)
• OAuth Token Introspection Responses (12)
• OAuth Token Type Hints (2)
• OAuth URIs (5)
• PKCE Code Challenge Methods (2)
• Profile URIs (1)
• Structured Syntax Suffixes (10)
• URI Schemes (32)
• URN Namespaces (14)
• Well-Known URIs (21)
• XML Namespaces (5)
• XML Schemas (3)

Adding Web Concept values combines specifications and con-

cepts. For each specification, a separate resource is created. This

resource describes the specification itself (with simple metadata

such as a title and an abstract), and then contains a set of values.

For each value, it is specified which concept it is for, what the value

is, how it is described, and where documentation about it can be

found online.

This means that the current state of Web Concepts is represented

by 262 specification resources (combining the specifications from

the organizations listed above), and that combined these 262 speci-

fication resources contain 730 values (combining the values for the

32 concepts listed above).

Adding values is done by adding specifications: A new resource

is created that represents the specification and the values it defines.

Then the complete Web site (which is currently a static Jekyll site)

is regenerated, and the new specification and values get added in

the various places where they are listed and linked.

This model is describing how Web Concepts are managed and

published as a site. However, the goal of Web concepts is to also

serve as a machine-readable source of information about Web con-

cepts, values, and specifications. To accomplish this goal, generating

the Web site also generates JSON data that represents specifications

and Web concepts/values. These two JSON documents are inter-

linked, and either one can serve as a starting point, depending on

whether one is mostly interested in specifications, or in concepts.

5.1 Specifications
Listing 1 shows the JSON representation of specifications. It is one

part of a bigger JSON document that represents all specifications,
and just shows one example (of the current total of 262 specifica-

tions).

The general structure is one of organizations and specification

series, in this case the organization is the IETF and the specification

series is their RFC stream of publications. Both the organization

and the series have unique identifiers which can be used to cross-

reference specifications and concepts, and also serve as human-

readable entry points on the Web.

An individual specification then has an identifier within the

series, and once again also has a URI for cross-referencing and

a human-readable landing page. The specification then has some

metadata associated with it, most importantly a title and a name

(and an abstract). It also has an URI identifier as assigned by the

organization itself, and a (possibly different) URL where the specifi-

cation can be accessed online.

The core information about the specification is an array of

concepts. Each of these concepts is defined by a concept identi-

fier (for cross-referencing with the detailed concept information

described in the following section), and a value identifier which

also serves cross-referencing purposes. Both the concept and the

value identifier are meant to be used in conjunction with the JSON

document representing all concepts and values (but they also serve

as human-readable entry pages to Web representations).

5.2 Concepts
All concepts and values are represented in a second JSON document,

which similar to the specification JSON describing all specifications,

describes all concepts and values. Listing 2 shows one excerpt from

this JSON document describing one value (of the current total of

730 concept values).

Starting from the currently configured 32 Web Concepts, the

JSON document is structured per concept. Each concept has some

metadata associated with it, which are its name in singular and plu-

ral form, as well as an id (that is both a human-readable resource,



Listing 1: JSON Structure Representing One Web Concept
1 { "IETF":
2 { "id": "http :// webconcepts.info/specs/IETF/",
3 "name": "Internet Engineering Task Force",
4 "short": "IETF",
5 "series": [
6 { "RFC":
7 { "id": "http :// webconcepts.info/specs/IETF/RFC/",
8 "name": "Request for Comments",
9 "short": "RFC",
10 "specs": [
11 { "2648":
12 { "id": "http :// webconcepts.info/specs/IETF/RFC /2648",
13 "title": "A URN Namespace for IETF Documents",
14 "name": "RFC 2648",
15 "URI": "urn:ietf:rfc :2648",
16 "URL": "http :// tools.ietf.org/html/rfc2648",
17 "abstract": "A system for Uniform Resource Names (URNs) ...",
18 "concepts": [
19 { "http :// webconcepts.info/concepts/urn -namespace":
20 "http :// webconcepts.info/concepts/urn -namespace/ietf" }]}}]}}]}}

Listing 2: JSON Structure Representing One Concept
1 { "concept": "http -method",
2 "id": "http :// webconcepts.info/concepts/http -method/",
3 "name -singular": "HTTP Request Method",
4 "name -plural": "HTTP Request Methods",
5 "registry": "http ://www.iana.org/assignments/http -methods/http -methods.xhtml#methods",
6 "values": [
7 { "value": "GET",
8 "concept": "http :// webconcepts.info/concepts/http -method/",
9 "id": "http :// webconcepts.info/concepts/http -method/GET",
10 "details": [
11 { "description": "The GET method ...",
12 "documentation": "http :// tools.ietf.org/html/rfc7231#section -4.3.1",
13 "specification": "http :// webconcepts.info/specs/IETF/RFC /7231",
14 "spec -name": "RFC 7231" }]}]}

but also correlates with the identifier that is used in the specifica-

tion data). For those concepts that have an officially maintained

registry, the link to it is included.

(At this point it is worth mentioning that the official registry in

all cases does not contain the exact same entries as those listed on

the current Web Concepts site. The reason for this is that the site

also lists many values that have been proposed, such as in Internet

drafts, but have not yet been officially added to the registry. Similar

situations will happen when organizations use Web Concepts as

their starting point, but then add concepts and values that they use

and thus document for their own API landscape, but that are not

intended to ever be entered in the official registries.)

Each concept is represented by an array of values (which are

harvested from all specifications). Each of these has an actual value,

and then lists both the concept identifier, as well as the value id

(which is a URI that can be cross-referenced with the specifications

data). The value then also contains details, which is represented as

an array as some values are defined in more than one specification.

The details contain a description, a link to online documentation,

and for easy cross-referencing also identify the specification, both

by identifier and by spec-name.

6 USINGWEB CONCEPTS
One obvious way how Web Concepts can be used is to serve as

helper information in tooling and documentation. For example,

when a tool is focusing on REST APIs and has design or program-

ming abstractions that use fundamental Web architecture concepts

such as HTTP request methods and status codes, then instead of

compiling this information manually, it simply can be reused as

provided by Web Concepts.



When using Web Concepts, three options are possible:

(1) One option is to download the JSON from the Web site, thus

creating a snapshot of the currently existing choices. This

could be combined with occasional updates, but essentially

would still remain a snapshot model.

(2) A second option is to dynamically load the JSON, ideally

combined with some caching mechanism so that any updates

made on the site get dynamically reflected when the site is

updated.

(3) A third option is to clone the site and control its evolution

separately. This could combine various techniques such as

trimming content, adding custom specifications, and still

periodically get changes from upstream so that any changes

in the site eventually will be reflected in the clone.

None of these options are by definition better than the other. It

is simply a question of how much dynamism is required, and how

much control.

However, using Web concepts for tracking the evolution of the

Web API standards landscape is just a starting point. Things get

more interesting when it comes to reusing Web concepts to create

a customized version, as described in the following section.

7 REUSINGWEB CONCEPTS
WhileWeb concepts can be simply used to track the landscape of the

Web API standards landscape, it also can be used as a starting point

for creating a more customized version of the “design language” of

APIs in organizations.

One example are special vocabularies that may be used within

organizations. In some cases, those may be covered by Web-level

concepts such as media types. However, there may be other cases

where vocabularies are used at different levels which are not nec-

essarily part of the “general Web API landscape”, such as RDF

vocabularies. In that case, it may be useful to add additional con-

cepts, so that these vocabularies can become part of the Web API

landscape that can be tracked.

Web concepts make that easy by treating both concepts and

specifications as configurable. This means that all that is required is

to add a new concept (such as “RDF vocabularies”), and then start

adding values identifying specific vocabularies. These values could

be identified and defined by organization-level documents, adding

to the starting point of standards organizations that are covered by

the current Web concepts dataset.

Another example may be a concept such as Kafka topics2. In or-

ganizations using the Kafka distributed streaming platform, topics

are an essential part of how messages get produced and consumed.

However, Kafka itself provides no facility for defining or managing

topics, it will simply organize message distribution based on mes-

sage topics of producers and consumers. An organization might

decide to turn Kafka topics into an additional Web concept, making

sure that there is a place where topics can be registered when they

are defined, and can be looked up to learn which message topics

are being used.

2
Kafka is an open-source stream processing software platform, where messages are

managed in a PubSub way, and message consumption is based on message labels called

topics.

8 TRACKING API LANDSCAPE EVOLUTION
An even higher level of sophistication can be achieved with Web

Concepts not just tracking concepts and values, but also tracking

usage of these values across APIs. This would amount to the abil-

ity to answer the question of “which of our APIs are potentially

returning the HTTP status code 451?”

This information could be tracked by all of an organization’s

APIs claiming which Web concepts they are using, and then having

some process for consolidating that information to result in usage

information across all APIs. One possible way of doing this would

be for a decentralized process to crawl usage information from

home documents [7] published by individual APIs.

Such a process could even yield historical data to represent trends

in the API landscape, such as saying which standards have seen

increasing and decreasing adoption across APIs. This information

would be useful information for developer teams looking for in-

formation on which standards to consider when designing their

API: popular ones might be good candidates, while those being

on the decline might not be the best design choices anymore. As

mentioned earlier, in the end this would create a dynamic picture

of which building blocks are being used within an organization’s

APIs, and how that view changes over time. That level of insight

could be an interesting perspective of the constantly evolving best

practices of how to design Web APIs.

9 RELATEDWORK
Web Concepts is first and foremost a resource where certain con-

cepts and agreed-upon values for them can be tracked. It was started

as an attempt to track concepts and standards, and to be able to

do this across the diverse landscape of organizations that define

concepts and values. While the idea itself is not unique, its coverage

and extensibility is.

For different scopes, other resources exist. As the oldest and a

very rich resource, there is IANA’s list of “Protocol Registries”
3
,

which in part overlap with Web Concepts. However, there is the

long-standing issue of this data not being exposed in machine-

readable format, and the additional issue of it only covering values

that are defined by, or have been registered with, IANA. It also

lacks the richer data model of Web Concepts with descriptions for

all values, and links to the authoritative source.

More targeted efforts exist as well. There is a GitHub repository

called “Know your HTTP * well”
4
, which maintains lists of HTTP

encodings, header fields, methods, status codes, as well as media

types and link relations. While having the same goal of making this

information available for easy consumption as structured data, it is

less comprehensive in the concepts it covers.

There likely are other resources out there with similar goal and

approaches, but to the best knowledge of this author, no resource

comes close in coverage of concepts, variety of sources from which

values are gathered, and openness in terms of being able to extend

the data easily with new values or concepts.

3
https://www.iana.org/protocols

4
https://github.com/for-GET/know-your-http-well

https://kafka.apache.org/
https://www.iana.org/protocols
https://github.com/for-GET/know-your-http-well


10 GOVERNANCE
One of the important questions is how the set of specifications is

going to be managed. There probably are some easy answers for

new specifications being published by organizations such as IETF

or W3C. These should be added to the main repository, and the

current process is to do this through PRs and possibly follow-up

discussions.

For standards set by smaller organizations, they may not be

as visible and widely used, but as long as they are added to the

respective IANA registry, they also are very good candidates for

inclusion. If they are not registered with IANA, then they might still

be valuable to include, as long as there is a published specification

that can be referenced and can be consulted by everybody.

For values that are used but neither registered nor defined in a

specification, things get more nuanced. For example, many Web

APIs use HTTP header fields that only they use, and while it is

well-know that they use these fields, there often is not a real speci-

fication for them. The current structure of Web Concepts does not

allow differing level of authority, so either these would have to be

added as specifications, or they would have to be left out. It may be

interesting to add such a differentiation to Web Concepts, but like

an binary system, it is likely to become problematic in some cases.

Finally, following the general git model of data management,

the Web Concepts repository can always be cloned and tweaked

as required (as discussed in Section 7). These clones could become

entirely disconnected, or their owners could choose to selectively

pull updates from upstream, and possible push their local updates

to upstream.

Generally speaking, Web Concepts is intended to be open data,

and is published under “The Unlicense”
5
. While the repository is

currently privately owned, it can easily be forked by anybody and

to anywhere, and with enough interest, it could easily be turned

into a GitHub organization (which are free for open source).

5
http://unlicense.org/

11 CONCLUSIONS
This paper describes Web Concepts and how they can be used to

serve as a starting point for developers looking to understand which

building blocks are popular when it comes to surfing the API Web.

The idea ofWeb Concepts is to provide an open and openly reusable

set of building blocks, which can be easily customized to represent

an organization’s model of when the Web’s uniform interface is all

about.

Such a view can help both providers and consumers of Web

APIs, allowing them to get a clearer picture of the design language

of APIs, and to make sure that within an organization, reuse of

API building blocks becomes an established and well-supported

practice.

REFERENCES
[1] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. Uniform

Resource Identifier (URI): Generic Syntax. Internet RFC 3986, January 2005.

[2] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.

Internet RFC 8259, December 2017.

[3] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and

François Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition).

WorldWideWeb Consortium, Recommendation REC-xml-20081126, November

2008.

[4] Richard Cyganiak,DavidWood, andMarkus Lanthaler. RDF 1.1 Concepts

and Abstract Syntax. World Wide Web Consortium, Recommendation REC-

rdf11-concepts-20140225, February 2014.

[5] Roy Thomas Fielding,MarkNottingham, and Julian F. Reschke. Hypertext

Transfer Protocol (HTTP/1.1): Caching. Internet RFC 7234, June 2014.

[6] Roy Thomas Fielding and Julian F. Reschke. Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. Internet RFC 7230, June 2014.

[7] Mark Nottingham. Home Documents for HTTP APIs. Internet Draft draft-

nottingham-json-home-06, August 2017.

http://unlicense.org/

	Abstract
	1 Introduction
	2 The Myth of the Uniform Interface
	3 Web API Design Culture
	4 Web Concepts
	5 Web Concepts Model
	5.1 Specifications
	5.2 Concepts

	6 Using Web Concepts
	7 Reusing Web Concepts
	8 Tracking API Landscape Evolution
	9 Related Work
	10 Governance
	11 Conclusions
	References

