Making the Infoset Extensible

Erik Wilde <net.dret@dret.net>

Abstract

The XML Infoset definesthe datamodel of XML, and it is used by a number of other specifica-
tions, such as XML Schema, XPath, DOM, and SAX. Currently, the Infoset defines a fixed
number of Information Items and their Properties, and the only widely accepted extension of the
Infoset are the Post Schema Validation Infoset (PSVI) contributions of XML Schema. XML
Schema demonstrates that extending the Infoset can be very useful, and the PSVI contributions
of XML Schemaare being used by X Path 2.0 to accesstype information in adocument's I nfoset.

In this paper, we present an approach to making the Infoset generically extensible by using the
well-known Namespace mechanism. Using Namespaces, it is possible to define sets of additional
Information Items and Propertieswhich are extending the core Infoset (or other Infoset extensions,
defining a possibly multi-level hierarchy of Infoset extensions). Basically, a Namespace for an
Infoset extension contains a number of Information Items, which may have any number of
Properties. It isalso possibleto define an Infoset extension containing only Properties, extending
the Information Items of other Infosets.

Further elaborating on this method, many of the XML technologies currently using the Infoset
could be extended to support the Infoset extensions by importing Infoset extension using the
extension's Namespace name. To illustrate these concepts, we give an example by defining the
XML Linking Language (XLink), the XML vocabulary for hyperlinking information, in terms of
Infoset extensions. We show how the proposed ways of supporting Infoset extensionsin XML
technol ogies such as X Path, DOM, and CSS could pave the path to abetter support (and hopefully
faster adoption) of XLink than we see today. XLink serves as one example, but the proposed
extensions and techniques are not limited to this particular technology.

The content of this paper iswork in progress, contributing to the ongoing debate on how to deal
with different XML vocabularies and their usage in other XML technologies. We believe that
making the Infoset extensible would provide a robust and flexible way of making the data
model of XML-based data more versatile, and creating an accepted way of making the data
available through standard interfaces such as DOM and X Path.

Table of Contents

L TOErOTUCTION ...ttt B
.. ¢
CTRE XML INFOSE] ...ttt ettt €]
... H
... H
.. H

D 5|3 0 E
.. 3]
.. 3]
.. 3]

B2 XLANK ..o e 3
[7._Opportunities For USING EXIENSIONGecveerriieeeieaeeeeteeeteeie et e eteete e ete et e e eae e e e eteenaeaneeeaeas 3
.. 3]

2 XPaN 2.0 ... i

B XHTML 2.0 ... i

B ODENISSUET ...t ettt 3]
XML 2002 Proceedings by deepX 1

Rendered by www.Render X.com

Making the Infoset Extensible

... B
BIDTOGIAONY ... B

1. Introduction

The Extensible Markup Language (XML) is the foundation of a number of technologies which are
used by other technologies and applications. Even though XML itself was the language that started it all, the core
of many XML applicationsis not XML itself, but the XML Information Set (XML Infoset) XML Infoset], the data
model of XML. Examplesfor technologiesbuilt ontop of the XML Infoset are the Document Object Model (DOM)
[DOM3Core], and the XML Path Language (XPath) [XPath1.0], which in turn serves as a foundation for other
technologies, for example the XML Transformations (XSLT) programming language and the XML

Query (XQuery) language.

In all these applications of the XML Infoset, the Infoset is assumed to be identical to the model specified in the
XML Infoset specification, even though the specification explicitly states that applications may subset or extend
the Infoset if they want to. The first major application of this principle of Infoset extensibility is XML Schema
with its definition of Post Schema Validation Infoset (PSVI) Contributions. In essence, XML
Schema defines the validation of a document as a process of Infoset augmentation. XML Schema thus cleverly
usesthe Infoset's extensibility, but looking at the current state of XML technologies, this also creates some problems,
such as

» theinability to access the PSVI contributions in a standardized way from within applications, because of the
DOM's limitation to the "core Infoset", and

» thenecessity of other specifications using the PSV1 contributionsto have them "hardcoded" into the specification.

The goal of this paper isto describe away how Infoset extensions could be specified generically and in amodular
fashion, so that specifications or applications built on top of extended Infosets could be built in astandardized and
re-usable way, and could use established technologies for dealing with extended Infosets, such as APIs and pro-
gramming languages. In general, this paper should be one step in the direction of filling in the gaps which are still
present in XML technologies as shown in table [Table 1.

Data Model Interface(s) Representation(s)
Documents XML Infoset DOM, SAX, JDOM XML 1.0, Canonical XML
Schema Languages DTD n/a XML 1.0
Schema components (Apache Schema compon- | XML Schema XML repres-
ent API) entation
RELAX NG n/a RELAX NG XML syntax,
RELAX NG compact syn-
tax
Formatting (CsS) SAC, CSS-OM (DOM) Css
(XSL-FO) n‘a XSL-FO
Hyperlinking (XLink) n/a XLink, HLink
HTML HTML 4.01 HTML DOM XHTML 1.0, XHTML 1.1
Selection XPath Node Tree XPath DOM, XSLT XPath

Table 1. Status of some XML -related Technologies

The underlying ideais that of XML and the XML Infoset as the foundation, which provides applications with the
ability to exchange and manipulate structured data in a very generic way, while certain specifications (such as
XML Schema) may add additional semanticsto this data (such astypeinformation), which also should be accessible
to applications. As a case study, we will present the XML Linking Language (XLink) [XLinkZ.0], which in away
isvery similar to XML Schema, becauseit also augmentsthe dataof an XML document with additional information,
in XLink's case with link information rather than type information.

XML 2002 Proceedings by deepX 2

Rendered by www.Render X.com

Making the Infoset Extensible

2. Motivation

XML technologies are still an evolving field, and a particularly interesting one because the inputs and demands
for the further development come from many different application areas and backgrounds. Even though this makes
XML an exciting field, many people agree that thereisalack of coherence in the foundationsfor all these techno-
logies, and it is our motivation to point out an area where amore clearly and generically defined model would be
beneficial.

As an example of the current state of XML technologiesit is interesting to look at XML and hyperlinking. After
along time of development, the XML Linking Language (XLink) [XLink1.0] has been defined as a W3C recom-
mendation in June 2001, but so far support for it is very weak. There are two important reasons for this lack of
support,

» thefirst isthelack of supporting standards, for example for programming with links (something like a DOM
XLink module), link styling (link support in CSS and XSL-FO), and a clearly defined processing model for
links;

» thesecond isthe fact that XLink isdefined in terms of syntax rather than a data model, and some possible ap-
plications of XML linking, such as XHTML, have problems with integrating XLink-style markup with their
own philosophy or tradition of markup design.

This problem could have been avoided if XLink had been designed in amore abstract way, so that thefirst problem
could betackled more easily by applying well-known mappings of the Infoset to new mapping of an extended Infoset,
and the second problem could have been dealt with by defining alternative syntaxes for the data model.

Of course, dternative syntaxes also introduce problems such as how to recognize them and how to avoid the un-
controlled spread of syntaxes for the same data model. Arguments about the pros and cons of what should come
first, adatamodel or asyntax, very rapidly are very often fought with alot of zeal und fundamentalism. The approach
presented in this paper is meant as an argument that for the sake of a clearly layered architecture it may be agood
thing to first define a data model and allow different syntaxes for it.

3. The XML Infoset

In this section, we give avery brief overview of the XML Information Set (XML Infoset) [XMLInfoset], the data
model of XML. The Infoset is an abstract model of the content of an XML document, it is neither an API nor a
representation. The Infoset is defined in terms of items having properties, and there are eleven types of items
(document, element, attribute, processing instruction, ...). The Infoset al so states that applications are freeto extend
or restrict that model, but it is unclear how exactly this may be done. In communications on the xml-dev mailing
list, Cowan, one of the authors of the Infoset specification, stated that

» "thereare only items and properties,
* every property has atype given, either 'set of items, 'list of items, or asimple type; and
* 'novalue isaspecia value, and 'unknown' is used when we are dealing with partial infosets."

However, all thesefactsare not clearly defined in the Infoset specification, aswell as some more specific questions
such as"isit possibleto restrict the allowed item typesin sets or lists of items”, or "what exactly are'simpletypes,
which type system is supported”? Looking from today's perspective, the simple types may be XML Schema's
simple or atomic types, but even if thisis the case (which is just an assumption), are only XML Schema built-in
typesallowed, or isit possible to use any derived type? And if derivation is allowed, may it be done by restriction,
list, and/or union? Thus, even though the Infoset serves avery useful and important purpose, it is severely under-
specified when looking at it from the perspective of how to extend it.

XML 2002 Proceedings by deepX 3

Rendered by www.Render X.com

Making the Infoset Extensible

4. Requirements

If we attempt to make the Infoset extensible in a clearly defined way, then the Infoset specification itself must be
much more precise in terms of how to use it as a foundation for derived Infoset specifications. In particular, the
Infoset specification must be extended in the following ways:

» Itemsand properties must be specified in aformal notation that makesit easy for Infoset extensionsto reference
them. The formal notation is also required to specify the types of properties.

» The"core" Infoset aswell asInfoset extensions must have an identifier assigned that makesit possible to refer
to this particular Infoset extension (or the core itself). In essence, this will enable a hierarchical structure of
Infoset extensions built on each other, which can most easily be regarded as a dependency graph (consequently,
it must be acyclic).

» Other specifications being based on the Infoset should be designed in away which supports Infoset extensions.
If not, Infoset extensions will not be accessible by these specifications.

These requirementswill be described in more detail in the following section. We call the new version of the Infoset,
which should be designed according to these requirements, the Extensible XML Information Set (EXIS). It should
be noted that the requirements as well as the concepts described in the following section are work in progress, so
they may be incomplete or need some adjustment. However, we believe that the general ideais valid and should
be implemented in the W3C standardization process.

5. Infoset Extensions

In the following sections, we describe in greater detail how EXIS Infoset extensions are designed. The three main
areas (as already pointed out in the previous section) are modularization (described in Section Bection 5.1)), a
datatype concept (described in Section [Section 5.4), and support for EX1S Infoset extensionsin specifications using
the Infoset (described in Section Bection 5.3).

5.1. Modularization

One of themain points of EXISisthat Infoset extensions should be regarded as modules, and that modul es depend
on other modules, so that a complete picture of a number of Infoset extensions will be a dependency graph (the
root of whichisthe core Infoset itself). To make this possible, Infoset extensions must be identifiable, and because
we essentially want to identify a set of names (items and properties), the mechanism which is mostly used for this
(and therefore also employed by us) is XML Namespaces [XM L Namespaces].

The XML Namespaces recommendation does not make any assumption about the names being identified by a
namespace name, different users of namespaces can use them differently, as demonstrated by the DTD-oriented
namespace partition concept introduced in a non-normative part of the XML Namespaces recommendation, and
by the symbol space concept introduced by XML Schema [XMLSchemal]. In the same way, EX|S namespaces
have two partitions, one for items and another for properties. Each name must be unique in its partition.

When defining new Infoset extensions, it is necessary to specify which other extensions (or the core) this new ex-
tension isbased on. Itemsin this new extension then may be defined and are within the namespace of this extension,
while properties may be defined which either belong to items of the same extension, or to items that have been
defined in extensions which serve as a foundation for the newly defined extension. If a property of an Infoset ex-
tension isdefined for an item of another extension, then this extension can be uniquely identified by its namespace
name, and the item by its name (relative to this namespace name). This Infoset extension then must be (directly
or indirectly) abase for the newly defined extension.

5.2. Datatypes

If Infoset extensions should be openly definable, then there must be a set of typesto choose from for the properties.
Items are defined by the propertiesthat they have, but properties often carry values that must be defined according
to some type system. In principle, properties may have three different kinds of values:

XML 2002 Proceedings by deepX 4

Rendered by www.Render X.com

Making the Infoset Extensible

» Special values: These are values such as 'no value' and 'unknown' used in the current Infoset specification,
which indicate specia cases which may occur for any property.

» Referencesto items: Properties may be simple references to items, sequences of referencesto items, or sets of
references to items. All three cases are used in the current Infoset specification, and these three variants of
references to items should be sufficiently versatile for Infoset extensions.

» Smple values. Many properties will have simple values such as strings, numbers, or one of a number of pre-
defined keywords. All these cases are used in the current Infoset specification, but it is unclear from which
basic set of datatypes these have been chosen.

Looking at thislist of values for properties, it seems asif the first and the last of them could be easily handled by
using XML Schema Datatypes [XML Schema2]. XML Schema's simple types provide an application-oriented set
of datatypeswhich can be derived by restriction, list, or union. Moreover, referencesto items could also be modeled
by using XML Schema-based types, but is is unclear whether this would include too much dependency into the
EXISarchitecture. However, XML Schemaprovidesan interesting set of built-in datatypes (on the contrary, RELAX
NG does not define such aset of built-in datatypes), and using this as the foundation for the datatypes
to be built into EXIS probably will prove useful. Thisisalso demonstrated by the fact that XML Schema datatypes
are already part of the data model of XPath 2.0 (and thus XSLT 2.0 and X Query 1.0, see Section for
an explanation), so that properties from Infoset extensions will fit in seamlessly with the existing data model.

5.3. Infoset Extension Support

The whole effort of making the Infoset extensibleis pointlessif there is no benefit to users. Modeling extensions
of the XML datamodel as Infoset extensions can have somevalueinitself by forcing the extension author to make
asmany of his assumptions and constraints as explicit as possible, but the goal of EXISisnot to support modeling
for the sake of modeling. Instead, EXIS is aimed at making life easier for specification authors as well as users,
and therefore the concept of Infoset extensions has to be supported by other specifications as well.

The two most prominent examples where Infoset extensions would have to be taken into account are the two most
popular tree models of XML, DOM and XPath. While DOM is mainly used as an interface from a large variety
of programming languages, X Path is used asafoundation for anumber of XML -specific technol ogies, most notably
XSLT and XQuery. In both cases, the tree model exposes an XML document to an application (and ultimately to
a user). In order to make EXIS immediately useful to users, Infoset extensions would have to be supported by
DOM and XPath, thus exposing the extended data model through the tree model to the user. In the following section,
we give some examples of where this could be of immediate benefit.

6. Extension Examples

While having a well-defined framework for modeling extensions of the XML data model is of value in itself, in
this section we give some exampleswhere existing XML technol ogies would have been improved by an underlying
model for Infoset extensions.

6.1. XML Schema

So far, XML Schemaisthe only XML specification extending the XML Infoset. XML Schema does so by intro-
ducing anumber of Post Schema Validation Infoset (PSVI) Contributions, which are defined in Section C.2 of the
XML Schema Specification [XMLSchemal]. Interestingly, XML Schema depends very strongly on the PSVI
model, because in XML Schema the whole process of validation is defined as a process of Infoset augmentation.
Basically, theinput for an XML Schemavalidator isan Infoset, and the output isthe Infoset augmented with PSVI
information.

Unfortunately, there is no defined interface for PSVI (the DOM activity within W3C once planned to create a
DOM PSVI module, but so far nothing has been published). As aresult of this situation, using an XML Schema
processor is easy as long as one is only interested in a binary result (validation as a whole succeeded or failed),
but when it comes to accessing the result of the validation process in a more detailed way, each XML processor
has its own way of making them accessible to the user (if at al).

XML 2002 Proceedings by deepX 5

Rendered by www.Render X.com

Making the Infoset Extensible

With EXIS, the PSVI information would have been modeled as an Infoset extension, and thus would have been
accessible through any interface mechanism generically supporting EXIS (such as a hypothetical DOM EXIS
module, described in more detail in Section [Section 7.1). If the developer community decided that accessing PSV |
through the generic interface was too cumbersome, it would still have been possible to define a dedicated DOM
module, but this could have been made on demand and without any period of time where PSV1 information was
not accessible at al.

If we think of advanced XML programming as being based on a DOM pipeline model, than the current situation
isthat aDOM pipelineincluding an XML Schema processor can either (a) not use the PSVI information produced
by the XML Schema processor, or is (b) depending on the particular way the XML Schema processor makes the
PSVI information accessible and isthereforetied to this particular XML Schema processor. Both alternatives have
drawbacks, and aDOM pipeline using an EXIS-enhanced DOM could benefit from providing accessto the PSVI
information while still being able to plug-in any other EXIS-enhanced XML Schema processor.

6.2. XLink

Another interesting exampleisthe XML Linking Language (XLink) [XLink1.0], whichisavocabulary for embedding
hyperlink information in XML documents. First approaches to define XLink based on a data model rather than
syntax have been published, one in a W3C note by Walsh [XLinkStyle], as well as a more general approach
[TIKrep148]. In both cases, XLink is defined in terms of Infoset items and properties, which comes very closeto
the notion of an Infoset extension as presented in this paper.

One of the more frustrating experiences for the hypermedia community has been the lack of support for XLink.
Even though X Link has been around for some time now, it is not supported by any major software, and also enjoys
only partly support in the W3C itself. Interestingly, the recent debate around the question whether XHTML 2.0
should support almost exclusively revolved around the fact that XLink syntax does not go very well
withHTML-style syntax. Whilethisis certainly true, the deeper and more fundamental question of whether XLink's
linking model was appropriate or not was only rarely touched. In Section [Section 7.3, we go into more detail about
the question of XLink and XHTML 2.0.

If XLink were to be revised, a new version should define only the data model in terms of Infoset extensions, and
leave open the syntactic representation to additional specifications. This would leave open the question of how
XLinks are actually encoded ("How can XLinks be recognized?' is the question of heard when proposing this ar-
chitecture), but rather than tying the data model to one particular representation (which may be disliked by some
people, asthe XLink vs. XHTML 2.0 debate proves), it would be wise to allow an additional degree of freedom.

Basically, al that the foundation for Web hyperlinking should do is define alinking model. It isvery questionable
whether purely syntactical aspects such as XLink's simple and extended links should be part of the linking model
itself. To put it differently, the"new Web hyperlinking standard" could be something like WLink (Web Hyperlinking),
and XLink would be just one syntax for it, based on XML and a specific set of objectives (such as providing a
simpler syntax and a more elaborated one). From an application point of view, it would be unimportant whether
a particular link structure had been created based on XLink markup, on HTML markup, or on some completely
different method, as long as the resulting link structure was compliant with WLink.

7. Opportunitiesfor Using Extensions

In this section, we describe some scenarios demonstrating how EXIS could be used to make life with XML tech-
nologies easier. This may not be the case for all XML users, but it will certainly appeal to users having additional
data models on top of XML, which up to now are forced to handle these additional data modelsin a completely
proprietary way.

7.1. DOM EXISModule

The Document Object Model (DOM) and its current variant DOM Level 3[DOM3Core] is one of the more successful
Web standards. It provides the foundation for many applications dealing with structured documents (either HTML
or XML). DOM3 defines a rather complex module structure, with dependencies between a number of modules.
This modular approach makes DOM more manageable, because most DOM applications do not require all parts
of DOM.

XML 2002 Proceedings by deepX 6

Rendered by www.Render X.com

Making the Infoset Extensible

Starting from this existing module structure of DOM, it would be easy to think about a DOM EXIS module,
providing generic accessto extended I nfosets. Basically, aprogrammer would haveto specify an Infoset extension's
namespace name, and, if it supported this Infoset extension, the DOM EXIS module would provide access to the
respective Infoset extensions. A cleverly designed XML parser could even be configurable with respect to Infoset
extensions, so that for exampleit would be possible to configure the parser how to harvest XLink Infoset extensions
from XLink syntax (or maybe XLink Infoset extensions from XHTML syntax).

The main point is that a DOM module for generic access to EXIS information would make it possible to work
with extended data models without the need to have a newly designed DOM module. For example, to work with
XLink using DOM, one currently needs to implement a proprietary "XLink modul€" sitting on top of the regular
DOM and collecting XLink information by searching for attributes being in the XLink namespace. Thisway, the
expenses of transforming XLink syntax to XLink information have to be carried by everybody wanting to work
with XLink.

7.2. XPath 2.0

In the same way as DOM provides access to Infosets in many programming languages, X Path provides access to
Infosets in some XML technologies, most notably XSLT and XQuery. The XQuery 1.0 and XPath 2.0 Data
Model [XPath2.0DataM odel] defines the data model for the latest version of XPath (in XPath 1.0 [XPathL.0], the
data model was an integral part of the XPath standard itself).

XPath syntax is very compact and powerful, but unfortunately it is not very consistently designed. For example,
axes are used to identify positional properties of nodes (for example, the f ol | owi ng- si bl i ng axis) aswell as
nodetypes (withtheat t ri but e axis). Names of nodes are referenced in different ways, either as name-only node
tests (for elements and attributes), or as parameters of node type node tests (for pr ocessi ng-i nstructi on
nodes). Thismakesit hard to extend XPathin alogical way to cover extensions of the underlying Infoset. However,
we believe that extension axes could be one solution to the problem of how to access Infoset extensionsin X Path.
In the same way as XPath allows extension functions to be accessed using their namespace-prefixed names, it
would be alogical extension of XPath to allow extension axes. Another way to go would be to extend the node
test to also support extension nodes (i.e., items). The exact mechanics of how to extend XPath to cover Infoset
extensions have to be examined in more detail, but the benefits are obvious.

If XPath supported EXIS, it would be possible to write an XSLT program to handle hyperlinks in documents. For
example, it would be possibletoinclude astatement likesel ect ="/ / xI i nk: | i nk: : *" (or maybesel ect ="/ des-
cendant : : xli nk: li nk()"), selectingall linkswithin the document and then doing something with them. Using
this approach, it would be possible to use the high-level language of XPath (which is avery powerful way for se-
lecting certain parts of an XML Infoset) and to make it immediately useful for data models which go beyond
XML's core model.

7.3. XHTML 2.0

The latest version of XHTML, which is XHTML 2.0 [XHTMLZ2.0], is currently under development. There was a
very long (and heated) debate over whether XHTML should start to use XLink syntax. The biggest problems are
that XLink'slinking model is not sufficient (because XHTML has more sophisticated linking semantics), and that
XLink's syntax does not fit into XHTML's markup design. The latest solution to this problem is HLink
(eventhough it isnot clear whether thiswill be used eventually). HLink basically isamapping mechanism making
it possible to use some of XHTML's established attribute names, and then taking their actual values from other
attributes (which may adhere to xlink syntax).

The problem of the XHTML working group illustrates the problem of XLink: it mixes data model and syntax,
makes them inseparabl e, and al so does not provide any way to built onit. Using amore modular approach, XHTML
might have used the XLink datamodel (or maybe extend it with thingsthat are XHTML requirements not satisfied
by basic XLink), and then define its own syntax for it, thus remaining backwards compatible with older HTML
dialects.

On amore personal note: On the scale between either redesigning XLink (which basically iswhat EXIS tries to
achieve) or making XHTML XLink-compatible (which would make it more different fromlegacy HTML), HLink
is probably not avery good solution. It may solve the problem of casting XLink into XHTML-compatible markup

XML 2002 Proceedings by deepX 7

Rendered by www.Render X.com

Making the Infoset Extensible

in this particular case, but it produces rather ugly markup and is not XLink anyway (because it extends XLink's
semantics).

8. Open |ssues

This paper describes work in progress. As such, there are lots of open issues and open questions, and there will
certainly be more once some of theissues below aretackled. We believe that the work invested in an more modular
data model supported by a number of technologies would be rewarded with the opportunity for more software re-
use and a cleaner approach to XML data models. However, to make this happen, the following questions have to
be answered:

» Specification of EXIS How isa EXIS module specified? It consists of items and/or properties and depends on
one or more other modules, so how is that information encoded? It could be done completely informally as
the current Infoset specification, or it could be done more formally, for example using a schemafor authoring
XML documents specifying EX1S modules. The most important part probably would be the datatype information
about the properties, because this information is necessary to access actual property values through interface
technologies such as DOM and XPath.

» Datatypes: At the moment it seems that XML Schema is the most promising candidate for the datatype
vocabulary for properties. The Sructures part of XML Schemais sometimes criticized because of its complexity
and its lack of aformal foundation, but the Datatypes part of XML Schema seems to enjoy more credibility.
However, in order to be really useful, it would be necessary to use type derivation (which is defined in the
Structures part), so the question is whether this would be a potential acceptance problem.

» 80/20 split: One question that always loomsis "Is it worth the effort?' In the case of EXIS, the answer very
much depends on the application area. If some user simply needs to handle elements and attributes, then EXIS
certainly isnot worth the effort. However, as XML isbeing used for increasingly complex tasks and data, users
that need to go beyond the rather simple XML core data model will certainly be happy to have some built-in
support for their needsinto important building blocks of XML application scenarios suchasDOM, XSL T, and
XQuery.

9. Conclusions

In this paper we have presented an approach to make the XML Information Set extensible. The approach presented
iswork in progress, and will most likely changein one aspect or the other. However, we believethat alot of benefits
could be realized with such an approach, the most important being the opportunity to handle XML and extended
XML datamodelsin amore systematic way. It will certainly be abig challenge to have an approach like thisbeing
accepted by the XML community, because it reaches deep into the foundation of a number of XML technologies.
However, one of the advantages of the approach isthat it will be fully backwards compatible, because it does not
change anything of XML's core data model. Our work on EXIS is continuing, and any feedback regarding the
work presented in this paper is very welcome.

Bibliography

[CSS3Intro] Eric A. Meyer and Bert Bos. CSS3 Introduction. World Wide Web Consortium, Working Draft
WD-css3-roadmap-20010523, May 2001.

[DOM3Core] Arnaud LeHors, PhilippeLeHégaret, Lauren Wood, Gavin Thomas Nicol, Jonathan Robie,
Mike Champion, and Steven Byr ne. Document Object Model (DOM) Level 3 Core Specification. World
Wide Web Consortium, Working Draft WD-DOM-L evel-3-Core-20020409, April 2002.

[HLink] Steven Pemberton and Masayasu | shikawa. HLink: Link recognition for the XHTML Family. World
Wide Web Consortium, Working Draft WD-hlink-20020913, September 2002.

XML 2002 Proceedings by deepX 8

Rendered by www.Render X.com

Making the Infoset Extensible

[RELAXNG] JamesClark. RELAX NG Specification. Organization for the Advancement of Structured Inform-
ation Standards, Committee Specification, December 2001.

[TIKrepl48] Erik Wilde. A Proposal for XLink Infoset Contributions. Technical Report TIK-Report No. 148,
Computer Engineering and Networks Laboratory, Swiss Federa Institute of Technology, Zirich,
Switzerland, August 2002.

[XHTML2.0] Shane McCarron, Jonny Axelsson, Beth Epperson, Ann Navarro, and Steven Pemberton.
XHTML 2.0. World Wide Web Consortium, Working Draft WD-xhtml2-20020805, August 2002.

[XLink1.0] Steven J. DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink) Version 1.0.
World Wide Web Consortium, Recommendation REC-xlink-20010627, June 2001.

[XLinkStyle] Norman Walsh. XML Linking and Style. World Wide Web Consortium, Note NOTE-xml-link-
style-20010605, June 2001.

[XML1.0Sec] Tim Bray, Jean Paali, C. M. Sperberg-M cQueen, and Eve M aler. Extensible Markup Language
(XML) 1.0 (Second Edition). World Wide Web Consortium, Recommendation REC-xml-20001006, Oc-
tober 2000.

[XMLInfoset] John Cowan and Richard Tobin. XML Information Set. World Wide Web Consortium, Recom-
mendation REC-xml-infoset-20011024, October 2001.

[XMLNamespaces] Tim Bray, Dave Hollander, and Andrew L ayman. Namespacesin XML. World Wide Web
Consortium, Recommendation REC-xml-names-19990114, January 1999.

[XMLSchemal] Henry S. Thompson, David Beech, Murray Maloney, and Noah M endelsohn. XML Schema
Part 1. Structures. World Wide Web Consortium, Recommendation REC-xmlschema-1-20010502, May
2001.

[XMLSchema2] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. World Wide Web Con-
sortium, Recommendation REC-xmlschema-2-20010502, May 2001.

[XPathl.0] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0. World Wide Web
Consortium, Recommendation REC-xpath-19991116, November 1999.

[XPath2.0] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan
Robie, and Jé 6me Siméon. XML Path Language (XPath) 2.0. World Wide Web Consortium, Working
Draft WD-xpath20-20020816, August 2002.

[XPath2.0DataModel] Mary F. Fernandez, Jonathan Marsh, and Marton Nagy. XQuery 1.0 and XPath 2.0
Data Model. World Wide Web Consortium, Working Draft WD-query-datamodel-20020816, August
2002.

[XQuery1.0] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and
Jérdme Siméon. XQuery 1.0: An XML Query Language. World Wide Web Consortium, Working Draft
WD-xquery-20020816, August 2002.

[XSLT1.0] JamesClark. XS Transformations (XSLT) Version 1.0. World Wide Web Consortium, Recommend-
ation REC-xslt-19991116, November 1999.

[XSLT2.0] Michae Kay. XSL Transformations (XSLT) Version 2.0. World Wide Web Consortium, Working
Draft WD-xslt20-20020816, August 2002.

XML 2002 Proceedings by deepX 9

Rendered by www.Render X.com

