
The Role of Hypermedia in Distributed System 

Development
Savas Parastatidis 

Microsoft 

savas@ 
parastatidis.name

Jim Webber 

ThoughtWorks 

jim@ 
webber.name

Guilherme Silveira 

Caelum 

guilherme.silveira@ 
caelum.com.br

Ian S Robinson 

ThoughtWorks 

iansrobinson@ 
gmail.com 

 

ABSTRACT 
This paper discusses the role of the REpresentational State 

Transfer (REST) architectural style in the development of 

distributed applications. It also gives an overview of how 

RESTful implementations of distributed business processes and 

structures can be supported by a framework such as Restfulie.  

Categories and Subject Descriptors 
D1.0 [Programming Techniques]: General. D.2.10 [Design]: 

Methodologies, Representation, D.2.11 [Software 

Architectures]: Patterns 

General Terms 
Design, Reliability, Experimentation. 

Keywords 
REST, Hypermedia, Distributed Applications, Distributed 

Computing, Web, Web services, Business Processes. 

1. INTRODUCTION 
Embracing HTTP as an application protocol puts the Web at the 

heart of distributed systems development. But that’s just a start. 

Building RESTful distributed systems requires more than the 

adoption of HTTP and the remainder of the Web technology stack 

[1]. In order to develop a system that works in harmony with the 

Web, one needs to carefully model distributed application state, 

business processes that affect that state, distributed data structures 

which hold it, and the contracts and protocols that drive 

interactions between the consituent parts of the system. The key 

REST concept of hypermedia is a design pattern that can greatly 

help building software to meet these demands. It enables the 

construction of systems that can easily evolve, adapt, scale, and be 

robust to failures by taking advantage of the underlying Web 

infrastructure. 

 

To bootstrap our understanding of hypermedia, we first 

reintroduce REST’s ―Hypermedia as the Engine of Application 

State‖ (HATEOAS) principle, applied in a modern distributed 

systems environment. We then show how to use the HATEOAS 

principle to construct protocols as the building blocks for 

applications. Finally, we describe how an open source framework 

and runtime, called Restfulie, can implement such building blocks 

to support the development and deployment of RESTful systems. 

2. HYPERMEDIA AS THE ENGINE OF 

APPLICATION STATE 
If we think of an application as being computerized behavior that 

achieves a goal, we can describe an application protocol as the set 

of legal interactions necessary to realize that behavior. 

Application state is a snapshot of the execution of such an 

application protocol. The protocol defines the interaction rules 

that govern the interactions between participants in a system. 

Application state is a snapshot of the system at an instant in time. 

Fielding coined the phrase ―Hypermedia as the Engine of 

Application State,‖ to describe a core tenet of the REST 

architectural style  [2]. In this paper, we refer to HATEOAS as the 

―hypermedia constraint‖. Put simply, this constraint says that 

hypermedia drives systems to transform application state.  

A hypermedia system is characterized by participants transferring 

resource representations that contain links according to an 

application protocol. Links advertise other resources participating 

in the application protocol. Links are often enhanced with 

semantic markup to give domain-specific meanings to the 

resources they identify. For example, in a consumer-service 

interaction, the consumer submits an initial request to the entry 

point of the service. The service handles the request and responds 

with a resource representation populated with links. The consumer 

chooses one of these links and interacts with the resource 

identified by the link in order to transition to the next step in the 

interaction, whereupon the process repeats. Over the course of 

several such interactions, the consumer progresses towards its 

goal. In other words, the distributed application’s state changes.  

Transformation of application state is the result of the systemic 

behavior of the whole: the service, the consumer, the exchange of 

hypermedia–friendly resource representations, and the acts of 

advertising and selecting links. On each interaction, the service 

and consumer exchange representations of resource state, which 

serve to alter application state. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, 

to republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. 

 

WS-REST 2010, April 26 2010, Raleigh, NC, USA 

 

Copyright © 2010 ACM 978-1-60558-959-6/10/04... $10.00   



2.1 Resource Representations 
There is much confusion regarding the relationship between 

resources and their resource representations. Yet their 

reponsibilities are quite obviously different on the Web. 

The Web is so pervasive that the HTTP URI scheme is today a 

common synonym for both identity and addressing. Resources 

must have at least one identifier to be addressable. Furthermore, 

although the terms ―resource representation‖ and ―resource‖ are 

often used interchangeably, it is important to understand that there 

is a difference and that there exists a one-to-many relationship 

between a resource and its representations. A representation is a 

transformation or a view of a resource’s state at an instant in time 

as encoded in one or more transferable formats, such as XHTML, 

XML, Atom, JSON, etc. 

For real-world resources, such as goods in a warehouse, we can 

distinguish between the ultimate referent, the ―thing itself‖, and 

the logical resource encapsulated by a service. It’s this logical 

resource which is made available to interested parties through its 

representations. By distinguishing between the physical and 

logical resource, we recognize that the ultimate referent may have 

many properties that are not captured in its logical counterpart, 

and which, therefore, do not appear in any of its representations. 

Of course, there are some resources, such as emails, where the 

ultimate referent is indistinguishable from the information 

resource. Semiotic niceties aside, we’re primarily interested in 

representations of information resources, and where we talk of a 

resource or ―underlying resource‖ it’s the information resource to 

which we’re referring. 

Access to a resource is always mediated by way of its 

representations. That is, Web services exchange representations of 

their resources with consumers. They never provide access to the 

actual state of the underlying resources directly – the Web does 

not support pointers! URIs are used to relate, connect, and 

associate representations with their resources on the Web. 

Since the Web doesn’t prescribe any particular structure or format 

for resource representations, they may take the form of a 

photograph, a video, a text file, or comma-separated values. Given 

the range of options for resource representations, it might seem 

that the Web is far too chaotic a choice for integrating computer 

systems where fewer, structured formats – such as JSON, or XML 

formats like Atom – are preferred. However careful choice of 

representation formats can constrain the Web enough for 

computer-to-computer interactions through hypermedia-driven 

protocols. 

3. STRUCTURAL HYPERMEDIA 
We are all familiar with the use of hypermedia on the Web as a 

way to transition from one Web page to another. The use of 

hypermedia controls, or links, to enable the identification of 

forward paths in our exploration of the information space is what 

we call ―structural hypermedia.‖ 

On the human Web, structural hypermedia is used for the 

representation of ―linked‖ documents. A Web browser enables the 

transition from one document to another on demand. The 

approach respects the underlying network. Information is loaded 

as lazily as possible, and the user is encouraged to browse pages – 

traverse a hypermedia structure – to access information. Breaking 

information into hypermedia-linked structures decreases the load 

on a service by reducing the amount of data that has to be served. 

Instead of downloading the entire information model, the 

application transfers only the parts pertinent to the user. 

Not only does this laziness reduce the load on Web servers, the 

partitioning of data across pages on the Web allows the network 

infrastructure itself to cache information. An individual page, 

once accessed, may be cached depending on the caching policy 

for the page and service. As a result, subsequent requests for the 

same page along the same network path may be satisfied using a 

cached representation, which in turn further reduces load on the 

origin server. 

Importantly, the same is true of computer-to-computer systems: 

structural hypermedia allows sharing of information in a lazy and 

cacheable manner, thereby enabling the composition of business 

data from a distributed dataset in a scalable and performant 

manner. While this strategy may incur a cost in terms of 

transactional atomicity, this is not a major concern since 

contemporary distributed systems design tends to favor other 

models for consistent outcomes that don’t sacrifice scalability. 

As an example of a hypermedia-enabled resource representation 

format, we refer the reader to Atom [3] and its increasing use in 

business environments. Atom makes use of hypermedia controls 

to bring together lists of information, which in turn reference 

other business resources. Using Atom, we can create distributed, 

connected, and deduplicated datasets by composing and 

navigating Atom feeds across the Web. 

4. MODELLING AND IMPLEMENTING 

DISTRIBUTED APPLICATION BEHAVIOR 
If we can model distributed data structures or information using 

hypermedia, it’s a logical assertion to suggest that we can do the 

same for behavior. An application makes forward progress by 

transitioning resources from one state to another, which affects the 

entire application state. Using hypermedia we can model and 

advertise permitted transitions. Software agents can then decide 

which possible forward steps they wish to activate based on their 

interpretation of the application state in the context of a specific 

business goal. 

Observing that automata can take advantage of hypermedia means 

that computerized business processes can be modeled and 

implemented using HATEOAS and hypermedia-enabled resource 

representations. As parts of the same distributed system interact 

with one another, they exchange resource representations 

containing links, the activation of which modify the state of the 

application. The services sending those resource representations 

can dynamically change the included links based on their 

understanding of the state of the resources they control. 

4.1 Domain Application Protocols 
We promote the notion that a service supports a domain 

application protocol or DAP by advertising subsequent legal 

interactions with relevant resources. When a consumer follows 

links embedded in resource representations and subsequently 

interacts with the linked resources, the application’s overall state 

changes. 

DAPs specify the legal interactions between a consumer and a set 

of resources involved in a business process. They sit atop HTTP 



and narrow HTTP’s broad application protocol to support specific 

business scenarios. As we shall see, services implement DAPs by 

adding hypermedia links to resource representations. The links 

highlight other resources with which a consumer can interact to 

make progress through a business transaction. 

In hypermedia systems, changes of application state resemble a 

workflow or business process execution, which implies we can 

build services that advertise workflow using hypermedia 

protocols. Hypermedia makes it easy to implement business 

protocols in ways that reduce coupling between services and 

consumers. Rather than understand a specific URI structure, a 

consumer need only understand the semantic or business context 

in which a link appears. This reduces an application’s dependency 

on static metadata such as URI templates or WADL [4]. As a 

consequence, services gain a great deal of freedom to evolve 

without breaking consumers (since consumers are loosely bound 

to the service via its supported media types and link relations 

only). 

A domain application protocol is associated with a contract that 

describes its behavior. In turn, a contract represents a collection of 

protocols, each of which consists of HTTP idioms, entry point 

URIs for the application, media types, and link relations. A media 

type is a collection of hypermedia representation formats (Figure 

1). 

Protocols 

Contract 

HTTP idioms 

Entry-point URIs 

Media types 

Protocol 

Link relations 

Processing models 

schema 

Formats 

Media type 

 

Figure 1. Contracts are composed of protocols. A protocol 

consists of a collection of media types, URI entry points, and 

HTTP idioms. A media type is a collection of resource 

representation hypermedia formats. 

Services should ensure that any changes they introduce do not 

violate contracts with existing consumers, which would break 

their DAP. Whilst it is fine for a service to make structural 

changes to the relationships between its resources, semantic 

changes to the domain application protocol, and changes to the 

media types and link relations used may change the contract and 

break existing consumers. The Web is not a license to be a bad 

citizen. 

4.1.1 Contracts 
Contracts are a critical part of any distributed system since they 

prescribe how disparate parts of an application should interact. 

They typically encompass data encodings, interface definitions, 

policy assertions, and coordination protocols. Data encoding 

requirements and interface definitions establish agreed 

mechanisms for composing and interpreting message contents to 

elicit specific behaviors. Policies describe interoperability 

preferences, capabilities and requirements—often around security 

and other quality of service attributes. 

Coordination protocols describe how message exchanges can be 

composed into meaningful conversations between the disparate 

parts of an application in order to achieve a specific application 

goal. 

The Web breaks away from traditional thinking about upfront 

agreement on all aspects of interaction for a distributed 

application. Instead, the Web is a platform of well-defined 

building blocks from which distributed applications can be 

composed. Hypermedia can act as instant and strong composition 

glue. 

Contracts for the Web are quite unlike static contracts for other 

distributed systems. They compose media types with protocols 

that extend the capabilities of a media type into a specific domain. 

Currently, there is no declarative notation to capture all aspects of 

a contract on the Web. While technologies like XML Schema 

allow us to describe the structure of documents, there is no 

vocabulary that can describe everything. As developers, we have 

to read protocol and media type specifications in order to 

implement applications based on contracts. 

4.1.2 Media Types 
The core of any contract on the Web is the set of media types that 

a service supports. A media type specification sets out the formats 

(and any schemas), processing model, and hypermedia controls 

that services will embed in representations. 

There are numerous existing media type specifications which we 

can select to meet the demands of our service. Occasionally we 

may create new media types to fit a particular domain. The 

challenge for service designers is to select the most appropriate 

media type(s) to form the core service contract. 

On entering into the contract, consumers of a service need simply 

agree to the format, processing model and link relations found in 

the media type(s) the service uses. If common media types are 

used (e.g. XHTML or Atom) widespread interoperability is 

readily achievable since there are many existing systems and 

libraries that support these types. 

We believe that an increase in the availability of media type 

processors will better enable us to rapidly construct distributed 

applications on the Web. Instead of coding to static contracts, we 

will be able to download (or build) standard processors for a 

given media type and then compose them together. 

Often that’s as far as we need to go in designing a contract. By 

selecting and composing media types, we’ve got enough collateral 

to expose a contract to other systems. However we need not stop 

there, and can refine the contract by adding protocols. 

4.1.3 Protocols 
On the Web, protocols extend the base functionality of a media 

type by adding new link relations and processing models. 

A classic example of protocols building on established media 

types is the Atom Publishing Protocol [5]. AtomPub describes a 

number of new link relations, which augment those declared in 

the Atom syndication format. It builds on these link relations to 



create a new processing model for the management of Atom feeds 

and entries. 

Where media types help us with the interpretation and processing 

of the formats, link relations help us understand why we might 

want to follow a link. A protocol may add new link relations to 

the set provided by the existing media type(s). It may also 

augment the set of HTTP idioms used to manipulate resources in 

the context of specific link relations. 

Services designers can also use independently defined link 

relations, such as those in the IANA link relation registry, mixing 

them in with the link relations provided by media types and 

protocols to advertise specific interactions. 

4.2 Putting Everything Together – The 

Restbucks Coffee Shop 
We are now armed with enough information to start building 

distributed applications using hypermedia. A consuming 

application can use the entry point of a service to start the 

interaction. From there, the DAP will guide the interactions by 

embedding links in the resource representations that are 

exchanged. The consumer may jump from one service to another, 

making forward progress in the entire business process along the 

way, as Figure 2 illustrates. 

Consumer 

resource 

resource 

resource 

resource 

resource 

resource 

resource 

resource 

available link not followed 

link followed as part of 
the state transitions 

Service 

Service 

Service 

Service 
 

Figure 2. Following a DAP in a business transaction. 

In order to illustrate the principles described in this paper, we 

have designed the ―Restbucks‖ online coffee service. The 

inspiration for our problem domain came from Gregor Hohpe’s 

observation on how a busy coffee shop works. In his popular blog 

entry,1 Hohpe talks about synchronous and asynchronous 

messaging, transactions, and scaling the message-processing 

pipeline in an everyday situation. We liked the approach very 

much and as believers that ―imitation is the sincerest form of 

flattery,‖ we adopted Gregor’s scenario.2 

                                                                 
1 http://www.enterpriseintegrationpatterns.com/ 

ramblings/18_starbucks.html 

2 In fact we liked the scenario so much that we put it at the heart 

of our forthcoming book ―REST in Practice‖ (O’Reilly 2010). 

The work on Restbucks illustrates the way in which business 

processes could be modeled and implemented using Hypermedia 

and the Web technology stack. For example, Figure 3 illustrates 

the ordering service of Restbucks and how it makes use of HTTP 

verbs to progress a business transaction. 

http://restbucks.com/order 
new order 

(create resource) 1 POST 

http://restbucks.com/order/1234 
order cancelled (only if 

state is at “payment 
expected”) 

3 DELETE 

https://restbucks.com/payment/1234 Payment accepted 4 PUT 

http://restbucks.com/receipt/1234 
Conclude the ordering 

process 6 DELETE 

Barista prepared order 5 

http://restbucks.com/order/1234 
update order (only if state is 

at “payment expected”) 2 POST 

http://restbucks.com/order/1234 
return latest representation 

of the resource 
GET 

Transitions initiated 
by consuming applications 

Events causing 
state transitions 

Business logic 

 

Figure 3. The supported HTTP interactions with the 

Restbucks ordering service, how they connect to the backend 

business logic, and the state transitions of the order resource. 

The Restbucks DAP only describes the entry point for an order. 

The rest of the URIs will be returned in the resource 

representations. For example, the HTTP response to the POST 

request for a new order will contain a resource representation with 

links that allow the consumer to update or delete the order, submit 

payment, or check the status of the order. The Restbucks media 

types define the format of the representations and the supported 

semantics for the links. Ultimately, the interactions cause the 

―order‖ resource to transition between a set of states (Figure 4). 

Of course, the state of the ―order‖ resource is only part of the 

entire application’s state at any particular point in time. 

payment 
expected 

preparing ready completed 5 6 

1 

cancelled 

2 

4 

3 

 

Figure 4. The state machine of an order resource. 

4.3 URIs and Loose Coupling 
We have explicitly identified the need for an entry point into a 

service, which is identified as part of a DAP description. 

Applications that do not use hypermedia to navigate through a 

business process or structural information tend to use out of band 

mechanisms (e.g. URI Templates) to advertise the existence of 

resources. In turn, this leads to tight coupling and makes it very 

difficult for applications to evolve and change. 

 

5. THE RESTFULIE HYPERMEDIA 

FRAMEWORK 
Restfulie is a software development and runtime framework that 

emphasizes structural and behavior hypermedia [6]. Restfulie 

makes it easy for developers to apply the REST architectural 

principles and implement them in a manner that uses the Web as 

an application platform. 



5.1 Restfulie’s Architectural Tenets 
Unlike Web development frameworks that attempt to hide the 

primitives of the underlying distributed application platform and 

promote type and/or contract sharing, Restfulie explicitly 

promotes loose coupling between services and their consuming 

applications. In Restfulie, there is no type or static contract 

sharing. Instead, its API is built around the principles of content 

type negotiation, hypermedia, and domain application protocols.  

The Restfulie framework supports the seamless incorporation of 

well-known and custom hypermedia media type formats in the 

development process. It promotes content type negotiation so that 

consumers and services can dynamically agree on the best 

(hypermedia) resource representation for their interactions. It is 

unique amongst other Web application development frameworks 

in that it extracts resource relations and possible state transitions 

from exchanged representations and exposes them through its 

API. By requiring developers to deal explicitly with hypermedia 

concepts, it guides and helps them in building truly RESTful 

systems. 

Jersey [7], RESTEasy [8], and other similar frameworks require 

the use of programmatic annotations in order to associate HTTP 

verbs and URIs with business logic. This results to rigid early 

binding. We believe that early, static binding is suboptimal for the 

dynamic, Web-based, scalable, loosely-coupled distributed 

applications of today. In contrast, Restfulie allows relations and 

transitions to be dynamically discovered, which is a core feature 

of linked, semantically rich systems. As well as providing this late 

binding mechanism, Restfulie also provides support for 

applications that have prior knowledge of a service’s links, 

formats, and protocols.  

5.2 Resources and Transitions 
Restfulie’s architecture is very much platform agnostic, which is 

to be expected given that it is based on the REST principles that 

we discussed in the previous sections. To date, Restuflie has been 

implemented in Rails, Java, and .NET, and a port to Erlang is 

underway. In this paper, we focus on the Rails implementation. 

First we show how the ordering service of our Restbucks coffee 

shop can be built in Rails with Restfulie. We concentrate on the 

management of an order’s state, as per the state machine shown in 

Figure 4. Our service is going to consume and serve ―order‖ 

resource representations, a typical example of which is shown in 

Figure 5. 

<order xmlns="http://schemas.restbucks.com/order"> 
  <location>takeAway</location> 
  <item> 
    <name>latte</name> 
    <quantity>1</quantity> 
    <milk>whole</milk> 
    <size>small</size> 
  </item> 
  <cost>2.0</cost> 
  <status>payment-expected</status> 
</order> 

Figure 5 An example of a Restbucks order 

We create an Order model in Rails (Figure 6) to represent the 

order’s state machine. Each state restricts the actions available to 

consumers of the model. For example, one can ―cancel‖ the order 

only if the order is in the ―unpaid‖ state. Also note that in some 

cases an action may result to the order’s (or some other 

resource’s) transition to a new state. For example, when the order 

is in the ―unpaid‖ state, a payment can be issued, which is 

implemented by a different resource. Rails allows us to model the 

resource’s state transitions in an intuitive manner. Restfulie makes 

sure that the model will be properly mapped to hypermedia-

friendly primitives. 

class Order << ActiveRecord::Base 
  acts_as_restfulie do |order, t| 
    t << [:self, :action => :show}] 
    t << [:retrieve, :id => order, :action => :destroy}] if 
order.is_ready? 
    t << [:receipt, :order_id => order, :controller => 
:payments, :action => :receipt}] if order.status=="delivered" 
    if order.status=="unpaid" 
      t << [:cancel, :action => :destroy}] 
      t << [:payment, :action => :create, :controller => 
:payments, :order_id => order.id}] 
      t << [:update] 
    end 
  end 
end 

Figure 6 Declaring an Order in Restfulie 

Restfulie will manage the lifecycle of an Order resource based on 

the Rails model of Figure 6. It automatically enables/disables the 

appropriate HTTP idioms on the resource, as shown in Figure 3, 

and includes the appropriate hypermedia controls in the 

exchanged resource representations. These controls allow agents 

to transition from one resource to another or from one resource 

state to another (legitimate) state. Using these controls, agents can 

make forward progress in the modeled business process—which 

in this case is the ordering process. 

5.3 Media Types 
Restfulie and Rails enable us to model an order’s lifecycle in 

isolation of the resource representation’s hypermedia format. As a 

result, we can leverage HTTP’s content negotiation so that 

consumers of the ordering service can indicate their preferred 

format for the order-related interaction. Of course, the ordering 

service has to be configured to support the chosen hypermedia 

format. It’s up to the service implementer to choose how many 

representation formats they wish to support and how the order 

resource and the state machine should be mapped to each format.  

The Rails code in Figure 7 shows how we can modify the model 

of Figure 6 to make Restfulie aware of our custom media type, 

application/vnd.restbucks+xml, for an Order resource 

representation. Our customer media type defines the resource 

representation format for an order, and uses atom:link elements 

to represent hypermedia controls. 

class Order << ActiveRecord::Base 

  media_type 'application/vnd.restbucks+xml'     
  acts_as_restfulie do |order, t| 
   ... 
end 

Figure 7 Declaring a media type for a resource representation 

Once the code of Figure 6 has been executed, and assuming the 

resource is in the ―payment expected‖ state, an HTTP GET request 

to http://restbucks.com/order/5 will return a custom media 

type representation like the one of Figure 8. Note the Atom links, 

which are automatically included by Restfulie to indicate the 

possible ways the recipient of the resource representation could 

make forward progress in the business interaction, as per the 

hypermedia principles we discussed in previous sections.  



<order> 
  <created-at>2010-01-09T15:18:29Z</created-at> 
  <location>take-away</location> 
  <status>unpaid/status> 

  <updated-at>2010-01-09T15:18:29Z/updated-at>   
  <cost>10/cost> 
  <items> 
    <item> 
      <created-at>2010-01-09T15:18:29Z/created-at> 
      <drink>latte/drink> 
      <milk>whole/milk> 
      <size>large</size> 

      <updated-at>2010-01-09T15:18:29Z/updated-at>   
    </item> 
  </items> 
  <atom:link rel="self" href="http://restbucks.com/orders/5"/> 
  <atom:link rel="cancel" 
             href="http://restbucks.com/orders/5"/> 
  <atom:link rel="payment"  
             href="http://restbucks.com/orders/5/payment"/> 
  <atom:link rel="update"  
             href="http://restbucks.com/orders/5"/> 

</order>   

Figure 8 Custom media type representation of an order 

When generating a representation, Restfulie will check the order’s 

resource state and its state machine in order to generate the set of 

relations as links, which are then translated to the appropriate 

hypermedia controls supported by the chosen hypermedia format. 

5.4 Restfulie and the Web  
Restfulie supports all those Web-related idioms one might expect 

from a modern Web application framework. Some of the major 

features include: 

 Support for the Create, Retrieve, Update, and Delete 

operations that are common in a resource-oriented 

distributed application; 

 Functionality so that developers can easily incorporate 

distributed state management logic in the actions of their 

models. For example, Restfulie automatically adds ETag and 

Last-modified headers in all the responses it generates. 

 Automatic action filtering based on the model description. 

For example, an order ―cancel‖ operation (modeled as an 

HTTP DELETE) will be automatically rejected if the order is 

in any other state apart from ―payment expected‖. 

5.5 Building Consumers with Restfulie 
In addition to enabling the implementation of hypermedia 

services, Restfulie also provides support for building consumers 

of such services. Restfulie’s primitives expose to developers a 

hypermedia-based model that allows a client to interact with 

RESTful services. 

A consumer application will initiate the interaction with a service 

through a well-known URI. As per the HATEOAS principles 

discussed in this paper, the hypermedia-enabled resource 

representations received will contain enough information for the 

client to make forward progress in the business interaction. 

Restfulie’s primitives enable developers to interact directly with 

these hypermedia controls. 

5.5.1 Entry point 
Entry points are typically accessed through a GET request, which 

retrieves a list of resources that can be acted upon, or a 

POST/PUT, which creates an initial resource. Figure 12 shows an 

example of the latter, where an HTTP POST request with 

'application/vnd.restbucks+xml' content is sent to the 

Restbucks ordering service. 

def create_order(what = "latte") 
Restfulie.at('http://restbucks.com/orders'). 
          as('application/vnd.restbucks+xml'). 
          create(new_order(what)) 

end   

Figure 9 Sending a POST request to the Restbucks ordering 

service 

5.5.2 Making forward progress 
Restfulie extracts the hypermedia controls from the received 

responses and exposes them to developers, who can then 

programmatically process the links and associated relations. 

Activating well-understood hypermedia link relations will result 

in the appropriate HTTP request being sent to the service. For 

example, activating the link associated with the well-known 

―delete‖ relation will cause an HTTP DELETE request. A 

service’s contract will define the appropriate HTTP verb that 

should be used for domain-specific relations. For example, when 

creating a payment resource through a "payment" relation, one 

needs to send a POST request with the appropriate content type, 

as Figure 10 illustrates. 

order.request.as('application/vnd.restbucks+xml'). 

              pay(payment(order.cost), :method => :post)   

Figure 10 Following hypermedia links 

6. CONCLUSION 
By embracing hypermedia, we realistically begin to expose 

business protocols over the Web. This milestone is important 

because of the significant benefits, in terms of loose coupling, 

self-description, scalability, and maintainability, conferred by the 

constraints of the REST architectural style. 

All of this comes at rather a modest design cost when compared to 

non-hypermedia services. This is encouraging, since it means the 

effort required to build and support a robust hypermedia service 

over its lifetime is comparable to that associated with building 

services that share metadata out of band using URI templates or 

WADL. It’s certainly a better proposition than tunneling through 

the Web using POX. 

Our experimentation with Restfulie (and other contemporary 

frameworks) has delivered existence proofs that such an approach 

is practical. We strongly encourage others to experiment with the 

approach. 

7. REFERENCES 
[1] W3C. Architecture of the World Wide Web, Volume One. 

W3C. [Online] December 15, 2004. 

http://www.w3.org/TR/webarch/. 

[2] Fielding, Roy. Architectural Styles and the Design of 

Network-based Software Architectures (PhD Thesis). s.l. : 

University of Irvine, California, 2000. 

[3] IETF. Atom Syndication Format. [Online] 

http://tools.ietf.org/html/rfc4287. 

[4] W3C. Web Application Description Language. [Online] 

August 31, 2009. http://www.w3.org/Submission/wadl/. 



[5] IETF. The Atom Publishing Protocol. [Online] October 

2007. http://tools.ietf.org/html/rfc5023. 

[6] Restfulie. http://restfulie.caelum.com.br/ 

[7] Jersey. https://jersey.dev.java.net/ 

[8] RESTEasy. http://jboss.org/resteasy/ 

 




