# **Multimedia Content**

Web Architecture and Information Management [./] Spring 2009 — INFO 190-02 (CCN 42509)

**Erik Wilde, UC Berkeley School of** 

**Information** 

2009-03-09



This work is licensed under a CC Attribution 3.0 Unported License [http://creativecommons.org/licenses/by/3.0/]

E. Wilde: Multimedia Content Contents

### **Contents**

| Abstract                                                        | 2  |
|-----------------------------------------------------------------|----|
| Images vs. Graphics                                             |    |
| • 1 Image Formats                                               |    |
| <ul> <li>1.1 Graphics Interchange Format (GIF)</li> </ul>       |    |
| ■ Graphic Interchange Format (GIF)                              | 6  |
| <ul> <li>1.2 Joint Photographic Experts Group (JPEG)</li> </ul> |    |
| <ul><li>Joint Photographic Experts Group (JPEG)</li></ul>       |    |
| <ul> <li>1.3 Portable Network Graphics (PNG)</li> </ul>         |    |
| ■ Portable Network Graphics (PNG)                               | 10 |
| ■ Alpha Channel Effects                                         | 11 |
| • 2 Video and Audio                                             |    |
| Download vs. Streaming                                          | 13 |
| ○ Streamed Paper                                                | 14 |
| ○ Video and Audio on the Web                                    | 15 |
| Content Delivery Networks (CDN)                                 | 16 |
| CDN Request Routing                                             | 17 |
| Audio on the Web                                                | 18 |
| ○ Video on the Web                                              | 19 |
| Conclusions                                                     | 20 |

Abstract (2)

Pictures are the only multimedia content on the Web that is widely supported by standardized formats. The most important picture formats are the *Graphics Interchange Format (GIF)*, the *Joint Photographic Experts Group (JPEG)* format, and the *Portable Network Graphics (PNG)* format. These picture formats target different application areas and depending on the picture material, choosing one format over the other can make a big difference. While audio and video are not supported by Web browsers, they also have become popular media types on the Web.

E. Wilde: Multimedia Content

### **Images vs. Graphics**

(3)

 Pictures can be encoded in a wide variety of ways

[http://en.wikipedia.org

[http://en.wikipedia.org
]









/wiki/Comparison\_of\_graphics\_file\_formats]

- Images are bitmaps of pixels
  - it takes *scanning/rendering* to produce images
  - o images have a certain native *resolution*
  - scanning is done by a scanner, a fax, or a camera's <u>CCD</u> [http://en.wikipedia.org /wiki/Charge-coupled\_device]
- Vector Graphics are composed out of graphic primitives
  - o graphics can be searchable, stylable, and scalable
  - the format can have different capabilities (2D vs. 3D)
- Graphics preserve model-level information
  - o this only makes sense if there is a model
  - rendering and styling can be an expensive process (e.g., video games)
  - o images can be a snapshot of some specific "view" of graphics
- Today's Web supports images, but not graphics

# **Image Formats**

# **Graphics Interchange Format (GIF)**

#### **Graphic Interchange Format (GIF)**

(6)

- <u>RFC 2046</u> [http://dret.net/rfc-index/reference/RFC2046] registers the oldest graphics format on the Web
- GIF was subject of a long patent debate
  - the compression technique of GIF (<u>LZW</u> [http://en.wikipedia.org/wiki/Lzw]) had been patented by Unisys (1983)
  - o Unisys wanted to get licensing fees from all commercial online uses of GIF
  - <u>Portable Network Graphics (PNG)</u> [Portable Network Graphics (PNG) (1)] was developed as an effort to develop a copyright-free format
  - in 1999, Unisys changed its tactics and wanted to collect one-time fees (\$5000-\$7500) from all users
  - o all GIF-related LZW expired in 2003/2004, so GIF is freely available now
- GIF's poor features make PNG the better choice anyway
  - 8 bit color (requires dithering for photographs), binary transparency
  - $\circ$  GIF's animation feature is the only thing that is not available in PNG ... ightharpoonup

# Joint Photographic Experts Group (JPEG)

## Joint Photographic Experts Group (JPEG) (8)

- <u>RFC 2046</u> [http://dret.net/rfc-index/reference/RFC2046] standardizes the second popular image format for the Web
  - ISO 10918 [http://dret.net/biblio/reference/iso10918] is the standard for the actual image format
- JPEG has been specifically designed for photographs
  - it always is lossy (it cannot preserve the complete information from a random bitmap)
  - it uses perception-based compression (for example, color precision is sacrificed for brightness)



Q = 50, filesize 15,138 bytes

Q = 10, filesize 4,787 bytes

Portable Network Graphics (PNG)

## Portable Network Graphics (PNG) (10)

- PNG is registered as image/png and is the third major image format
  - PNG was intended to be a royalty- and copyright-free replacement of GIF [Graphics Interchange Format (GIF) (1)]
  - image formats need to supported by browsers and thus take a long time until they are established
  - IE6 implements PNG in a very rudimentary form, IE7 handles PNG correctly
- PNG has some advantages over GIF and JPEG
  - o lossless, compressed palette, grayscale, or true color images
  - o 8 bit alpha channel for gradual opacity (blending into the background)
- JPEG still is the preferred format for photographic pictures
- GIF still is the preferred format for animated images



E. Wilde: Multimedia Content

Portable Network Graphics (PNG)

## **Alpha Channel Effects**

(11)



# **Video and Audio**

## **Download vs. Streaming**

(13)

- Web resources usually are downloaded
  - browsers may choose to implement incremental rendering (e.g., HTML or images)
  - o the resource is completely downloaded and stored
- <u>Streaming</u> [http://en.wikipedia.org/wiki/Streaming\_media] means that there is no complete download
  - o TV and phone calls are classical examples of streaming
  - any navigable media type can use streaming (<u>iPaper</u> [http://www.scribd.com/tools/ipaper] is "streamed PDF")
  - o some data sources cannot be downloaded (e.g., a security camera)
- Streaming often is also used because of security issues
  - o downloads make it easy to get content and redistribute it
  - streaming makes redistribution much harder (content must be <u>destreamed</u> [http://en.wikipedia.org/wiki/Destreaming])
  - $\circ$  the data formats for streaming are often undisclosed

E. Wilde: Multimedia Content Video and Audio

## **Streamed Paper**

(14)

E. Wilde: Multimedia Content Video and Audio E. Wilde: Multimedia Content Video and Audio

## Video and Audio on the Web

(15)

- Internet Protocols [Internet Architecture] only provide best-effort connections
  - Quality of Service (QoS) requires end-to-end QoS provisioning
  - QoS was never implemented on the Internet for economic reasons
- Data types and expectations co-evolve with the infrastructure
  - o faster processors and graphics chips can handle high-resolution video
  - o faster networks and better compression make high-resolution feasible
- Almost all data traffic will eventually move to an Internet
  - o TV and telephony are two very popular examples
  - o almost all telephony is handled on "a" Internet today anyway
- The public Internet and an Internet are not the same thing
  - o companies and the military often have separate networks
  - o using Internet technologies for building a network is cost-efficient
  - o security and economics decide how Internets are connected

## **Content Delivery Networks (CDN)**

- High-volume traffic is better not routed from one place
  - Google [http://www.google.com/] and YouTube [http://www.youtube.com/] only look like a "a site"
  - o sophisticated routing and load balancing helps handling traffic
- <u>Content Delivery Networks (CDN)</u> [http://en.wikipedia.org/wiki/Content\_Delivery\_Network] are designed for high-volume low-latency delivery
  - o clients in different parts of the world will be served by different servers
  - o the internal data distribution and management is handled by the CDN
- CDNs are required when sites start handling large traffic volumes
  - CDN services can be bought by site/service owners
  - Akamai [http://www.akamai.com/] and <u>Limelight</u> [http://www.limelightnetworks.com/] are two popular services
- CDN are usually hidden by other technologies
  - o DNS responses for CDN hostnames are returned based on the request
  - o prepackaged video codecs for Flash/Silverlight have built-in CDN support

(16)

E. Wilde: Multimedia Content Video and Audio E. Wilde: Multimedia Content Video and Audio

## **CDN Request Routing**





#### **Audio on the Web**

(18)

- Audio is not very popular on the Web
  - o the Web is mostly visually oriented
  - o audio content without playback controls is not user-friendly
  - o most sites using multimedia use video [Video on the Web (1)] instead of audio
- Internet radios such as <a href="Pandora">Pandora</a> [http://www.pandora.com/] often use Flash
  - o they are standalone applications running in a browser
  - o content is often delivered via HTTP to circumvent firewalls
- Audio formats exist in many different variations
  - MPEG1 Layer 3 (MP3) [http://en.wikipedia.org/wiki/MP3] was the first widely supported audi format
  - Advanced Audio Coding (AAC) [http://en.wikipedia.org/wiki/Advanced\_Audio\_Coding] is Apple's preferred format because of DRM [http://en.wikipedia.org/wiki/FairPlay]
  - o audio streaming formats often use much less bandwidth

E. Wilde: Multimedia Content

Video and Audio

E. Wilde: Multimedia Content

### Video on the Web

(19)

- Video formats have been evolving quickly for a while now
  - o video signals have a lot of redundancy that is hard to compute
- Depending on the application, algorithms ideally behave differently
  - o for playback of recorded content, encoding can be very expensive
  - $\circ\,$  symmetric scenarios (such as video conferencing) better use symmetric codecs
- Handling video in <u>Plug-Ins</u> [Web Browsers; Plug-Ins (1)] effectively implements dynamic codecs
  - 1. YouTube [http://www.youtube.com/] started serving better quality a while ago [http://news.cnet.com/8301-10784 3-9817732-7.html]
  - 2. the servers and the Flash plug-in have to be updated
  - 3. browsers reload the Flash code every time they load a YouTube page
- Video encoding combines time-enabled <u>Image Formats</u> [Image Formats (1)] and <u>audio</u> [Audio on the Web (1)]
  - o both signals must be carefully synchronized
  - sophisticated encodings use variable bitrates and even vary between video/audio rates

## **Conclusions**

(20)

- Images are the only supported media types on the Web
- Video and audio are not really "Web Media Types"
- Image formats serve different purposes on the Web
- PNG for graphics and JPEG for photographic images
- GIF should be avoided (still required for animated images)