
1

MULTIMEDIA JOINT EDITING BASED ON RESERVATIONS

Erik Wilde

Swiss Federal Institute of Technology (ETH Zürich)
Computer Engineering and Networks Laboratory

CH – 8092 Zürich
wilde@tik.ethz.ch

appeared in: Proceedings of the 3rd Australian Multi-Media Communications, Applications and Technology Workshop,
Wollongong, Australia, 14th-15th July 1993

Abstract

Joint editing as opposed to “normal” editing is an activity carried out by several people
simultaneously. It raises the problem of coordinating write access to a document. The
approach described in this paper uses an editing model of reserved regions and a client/server
architecture. Any region of a document may be selected and reserved (provided that it is not
reserved already) and may then be changed by the owner. Other users can only read it. The
software basis of the editor is the Andrew Toolkit. This allows the use of arbitrary media
types within the document.

1.0 Introduction

Joint editing (also referred to as collaborative editing) is an area of research which was estab-
lished nearly 10 years ago. It describes the general development of computer applications from
tools for the individual user to software for the support of whole working groups (groupware1).
This has influenced most areas of computer science research.

In research and industry environments, most documents such as technical reports, papers, studies,
or similar material are written by a number of people, not just one single author. Most of the time,
documents are worked on concurrently, i.e. a number of authors want to change the document at
one time. Conventional (i.e. single user) editors do not support this type of work, since they pro-
vide write access to all parts of a document and thus are not appropriate for collaborative work,
even if they are used by more than one person (e.g. by using window system multiplexors to allow
input from several users to one program).

Collaborative editing therefore needs to be provided by specialized programs which “know” that
several users are concurrently editing one document and therefore provide mechanisms to avoid
access conflicts. Problems may arise when several people try to change one paragraph concur-

1) The rapidly growing field ofComputer Supported Cooperative Work (CSCW) is the discipline which
concentrates on this issue. CSCW research focuses on using computers for workgroups instead of indi-
viduals (for an overview on CSCW see [1]).

2

rently or when one person edits a part of the document which is at the same time moved or even
deleted by another person.

The editor described in this paper is one part of theMultimETH conferencing system. However,
the editor may be used totally independent of the conferencing system and thus this system is only
mentioned when absolutely necessary (e.g. when it comes to communication issues, which are
implemented based on the conferencing system’s communication mechanisms). The interested
reader is referred to [2], which contains an extensive discussion of the conferencing system and
its properties.

2.0 The Editing Model

Two major issues have to be taken into account. The first is how the distribution of users is mod-
eled within the system, i.e. which processes reside on which systems and which tasks do they
have. The second is how these distributed processes interwork, i.e. how the distributed entities are
designed to make joint editing possible by coordinating their activities.

The model of the distribution of processes within the editor described here is fairly simple. We
chose a client/server approach to map the human users and a central entity (which is responsible
for permitting changes to the document) onto processes. There are two main reasons for this deci-
sion (see [3] for an in-depth discussion).

• Joint editing can be seen an example of several people doing work that has to be synchro-
nized. A server can be used to achieve this goal; it is responsible for allowing access to
selected parts and making sure that no inconsistencies can occur.
Since it is connected to all clients (users), the server is ideally suited to control all write
accesses to a document. It can also easily determine who has the right to modify something
if two users issue a corresponding request simultaneously.

• The conferencing system MultimETH, which is used as a base for the editor, is also struc-
tured in a client/server manner. That is, when using the editor with the conferencing system,
every user is already represented by a client process (implementing the front end of the con-
ferencing system) and there is one central server entity which is used as the conferencing
center.
If the editor’s model of processes is identical with the one of the conferencing system, the
transport mechanisms of the conferencing system can be used. Therefore, it is not necessary
to deal with communication between computers in this case. Only local communication
facilities need to be used to handle data between the editor’s distributed components and the
conferencing system’s processes. This approach also reduces the number of connections
necessary.

The second main issue mentioned above is the model of joint editing used by the editor, i.e. the
method that is used to make collaborative editing possible. Our approach is based on the observa-
tion that typically, every user wants to see and to be able to browse through the whole document,
but changes are only made to small (and most of the time few) regions of it. Immediate updates of
changed regions are not a critical issue2, although it must be possible to request the current ver-

3

sion of any reserved part on request or periodically. Consequently, we make the whole document
available for reading, but only explicitly selected regions may be modified.

To satisfy the requirements described above, we provide a mechanism to select and reserve
regions of the document, which are (after having been reserved) owned by the user who requested
the reservation. Any consecutive region of the document may be selected, i.e. it is not necessary
to select complete sentences, paragraphs, or sections. The selection can be made using the normal
selection mechanism of the editor, which makes the reservation mechanism an integral part of the
editing process. After the reserved region has been modified, it can be set free and becomes a nor-
mal part of the document which may then be selected by another user. Figure 1 shows the opera-
tions which can be used when working with selections and reservations and how they depend on
each other.

Figure 1: Reservation Model3

The figure shows our reservation model and also gives an example of how working with the editor
can look like. For changing a certain region of the document, that region must be selected and
reserved. After a successful reservation, the region may be modified and finally the changes can
be accepted or the original text can be restored. The following list gives a short overview of the
operations we have defined.

2) This question is very controversial. While some people believe that it is necessary to have high speed
links connecting the users to provide immediate updates of all media types, we assume that it is suffi-
cient to have a restricted level of synchronicity.

3) The content within the document could also be a graphic or some other media type, not only text.

commit

reserveunreserve

select

submit

read-only content

content to be

modified/new

reservation

content

selected/reserved

selection

4

• select
The select operation is the mechanism normally used within editors, i.e. the mouse is used
for marking consecutive regions within the document. Thus, there is no explicit select oper-
ation or mechanism we have to implement, we simply take advantage of the available oper-
ation.

• reserve
After selecting a region of the document using the select operation, it is possible to use the
reserve operation to turn the selection into a reservation. This operation will reserve the
selected region for the user who performed it, i.e. no other user of the joint editing session
will be allowed to reserve anything within this region of the document. The server is
responsible for handling reservations, which are granted to clients on a first-come-first-
serve basis.

• submit
Because there is a certain level of asynchronicity within our editing model (there is no
immediate update), there is a special operation which can be used to propagate the changes
applied to a reserved region so far to the other participants of an editing session. Submit
does not change the status of the reserved region (i.e. it remains reserved), but it causes an
update to be sent to all other editor clients4.

• commit
If the reservation is no longer required (because all modifications are made or because
another participant of the editing session wants to reserve that region), and the changes
should be applied to the document, the commit operation is used. After committing the
changes, the modified region becomes a normal part of the document (i.e. the reservation’s
content is integrated into the document) and can be reserved again by any user.

• unreserve
If, for any reason, the changes are not to be integrated into the document, unreserve may be
used to give up the reservation and restore the original content of the reservation. In this
case, all changes made within the reservation are discarded.

All operations are context dependent, i.e. it is only possible to perform a certain operation when
the context is appropriate. Figure 1 identifies which operations are allowed in which states. The
small set of operations makes it easy for users to remember the joint editing facilities of the editor.

3.0 Implementation Aspects

We have implemented the editor using the Andrew Toolkit (ATK) [4], which is part of the
Andrew System freely available with the distribution of the X window system. While the Andrew

4) We decided to allow everyone to use the submit operation, i.e. not only the user who owns a reservation
may use this operation. Thus, if any participant is interested in an update of a reserved region, he simply
uses the submit operation for requesting the actual content from the owner’s client process which is
then also transmitted to all other clients.

5

System itself contains many complete applications (such as a messaging system and a distributed
file system), the ATK is a collection of building blocks which can be used for programming mul-
timedia applications. The ATK itself is portable and running under several window systems, the
version we have used is based on the Xlib library of the X window system.

The ATK uses a language of its own, which is a superset of the C programming language. It uses
a preprocessor to translate the ATK code into plain C code which is then processed with a normal
C compiler. The language extensions provide an object-oriented programming environment. The
definition of each class is divided into two parts, the class header, which defines the interface of
the class, and the class implementation, which contains the code that is executed for each method
call. Unfortunately, multiple inheritance is not possible, which would have been advantageous in
some cases.

3.1 ATK Insets

The basic building blocks of ATK applications areinsets. Insets are mainly used to implement
new media or information types which should be usable with different ATK applications. Using
insets, it is not necessary to change the actual applications. Every inset can be viewed as a pair of
classes conforming to a set of conditions (which are necessary to make the interworking of insets
and ATK applications possible), one class implementing thedataobject, the other class imple-
menting theview.

• Thedataobject is responsible for maintaining the data of an information type and providing
the facilities for reading and writing the data. Thus it can be seen as that part of a new infor-
mation type that is independent from its presentation.

• Theview of an inset is responsible for displaying the data. A view does not store any data
that is relevant to the information type itself, only issues which are of interest to the presen-
tation alone are within the view’s responsibility.

The separation of information types into a data and a view part is useful for various reasons. One
(more abstract) reason is the conceptual goal of keeping the representation of data clearly sepa-
rated from its presentation. This enables the user of insets to easily create effects which might be
otherwise hard to implement, such as having two consistent views onto one dataobject.

Without any coding efforts, it is possible to create a document which contains a set of numeric
data and two different views on this set, e.g. a table and a pie chart. Because both views use the
same dataobject for storing the data, every change of the table also changes the pie chart and vice
versa, so there are no consistency problems.

Every inset has to satisfy a small set of requirements which are used to make sure that it can be
used with nearly every ATK application. While implementing our editor, we faced the problem
that every inset handles its own data (i.e. there is no user programmed, central input routine5).
That is, keyboard (and mouse) inputs are passed down the view hierarchy to the view of the inset

5) Actually, all input to an ATK program is handled by the interaction managerim, which is a special
object that receives all keyboard and mouse events and sends it to the “right” view.

6

which has the input focus and are handled there. Since users should only be able to modify
reserved regions of the documents, all other parts must be set read-only. Unfortunately, this is a
nonstandard inset property, so that only some insets offer a read-only feature (some as methods,
others as variables). However, this property is not mandatory, i.e. not defined in the superclasses
dataobject and view.

Consequently, we introduced a new mandatory method which must be implemented by all insets
which should be used with our editor. It can be used to set an inset to read-only and should be
implemented recursively. With this method, it is possible to set all unreserved regions to read-
only, otherwise it would be possible to modify an inset’s data even if it is not reserved.

3.2 The Joint Inset

The standard editor provided with the ATK isez. It is an editor program which can be used to han-
dle and manipulate ATK insets. Although it is possible to use ez for editing with multiple users
(using multiple views and displaying them on different X servers, a feature that is already built
into ez), there is no coordination or access restriction. Therefore we used ez as a base for our edi-
tor, extending its functionality with joint editing features. What we needed was a way to distin-
guish between different users and to restrict write accesses to explicitly reserved regions.

We thus changed the ez application as well as thetext inset that is normally used with it. The
major change was to add areserve command which can be used to reserve selected regions of the
document. We used the text inset as the basis for the joint editing inset. Reserved regions are
placed in a special type of inset, which is described in detail in the following section. Because the
clients are implemented stateless, a reserve operation is simply transmitted to the server and noth-
ing is remembered inside the client. The server then reacts to this request by either granting a res-
ervation which is then transmitted to all clients (including the one that asked for it) or ignoring the
request if the reservation could not be made (e.g. because an already reserved region has been
selected6).

Another modification necessary were the file commandsload andsave, which normally work
locally, i.e. they read from and write to the local file system. We changed these commands to work
over the network, because a save operation should not create a local copy of the document but
perform a save operation on the server side. The load operation was modified accordingly.

3.3 The Jnote Inset

The joint application (i.e. our collaborative editor) uses a special inset to represent reservations
within the document. We implemented this inset using a given inset as a basis. Thejnote inset’s
implementation is based on thenote7 inset. We modified the inset to display the name of the

6) If a reservation is part of the selection, the server reserves all content until the beginning of the first res-
ervation. If only existing reservations are selected, the server does not create a new reservation.

7) The note inset is provided with the standard ATK distribution. It is part of a set of insets created by the
MIT. Originally, this inset was designed to make annotations to documents (either open or closed) to
allow readers to make comments to documents without “changing” them.

7

owner of a reservation in its title bar and to provide the operations necessary within a reserva-
tion’s context, i.e. submit, commit and unreserve. Furthermore, we implemented the submit
mechanism to be executed automatically (we called this the autosubmit feature), in case the user
wants to send or receive updates periodically instead of initiating submit operations manually.
The status of the autosubmit mechanism is also displayed in the jnote’s title bar.

These additional operations are available in new items within the menu bar of the jnote inset, such
that a user may perform one of these operations whenever he is in the right context (i.e. is working
within a jnote). All operations are executed immediately, except the commit operation, for which
the user is prompted to type in a short (a few words) description of the changes, which is then
added to the document’s change log8.

The autosubmit mechanism works on an adaptive basis. It is configurable with regard to the mini-
mum and maximum delay before a submit operation and can be used to periodically update exist-
ing reservations. The adaptation procedure takes the difference of the volume of the two last
submit operations to calculate the delay until the next submit is executed. This difference should
give an rough estimate of the modifications applied to a reservation. Consequently, the adaptation
is always a little bit “too late” and fails to take replacements into account, but it is sufficient for
most cases, except when the size of a reservation changes very rapidly (e.g. using large cut or
paste operations). Autosubmit may only be enabled by the owner of a reservation.

The jnote inset is implemented in a way that allows it to store all relevant information needed for
a reservation. The implementation is based on the ATK’s dataobject/view separation which again
is very useful in this case. Any jnote view might use at most three different contents stored by the
dataobject. One of these is only necessary for the jnote’s owner.

• The original contains the content originally reserved by the requestor of the reservation.
This content is needed if the owner finally chooses the unreserve operation to throw away
all changes and restore the original content of a reserved region.

• Theeditablecontent is necessary for the owner of a reservation only. It is the content that is
displayed and directly accessible for making changes in the jnote view’s window of the res-
ervation’s owner. The editable content is copied to the submitted content (see below) for
each submit operation.

• The submittedcontent of the dataobject contains the most recently submitted content of a
reservation. In case of a commit operation, this is the content to be inserted into the docu-
ment9. The submitted content is the content displayed by all jnote views which are not own-
ers of the reservation (i.e. all other clients).

8) The change log is part of a document’s administrative information and provides a list of triples consist-
ing of a change’s date, the name of the user who made the change, and the description entered at the
prompt after having selected the commit operation. Thus the change log represents a short history of all
changes applied to a document.

9) The commit operation is implemented in a way that first a submit is executed which copies the editable
content of the owner to all submitted dataobjects, which are then integrated into the document.

8

This use of several content portions within one dataobject makes it easy to manage the different
content versions which have to be stored for each reservation. In fact, all jnote views use the same
jnote dataobject, but they display different content portions. Performing certain operations (such
as submit, unreserve or commit) is as easy as copying one content to another. The update of views
whenever the dataobject changes is handled by the ATK automatically, so the coding of the reser-
vations has been relatively straightforward.

3.4 The RMC package

The RMC (Remote Method Call) package has been implemented to allow the execution of
instance methods of objects located on remote systems. Whenever a reservation is requested, the
client’s joint instance executes a special method on the server’s joint instance (which is responsi-
ble for handling reservations). This remote execution is supported by a special package10 which
allows the client to execute methods on the server’s objects and vice versa. RMC is used by regis-
tering with the RMC package. The class and the instances must be registered in order to be able to
execute a RMC call or to be called by a remote object. The RMC package stores the registration
information and pointers to the objects and thus is able to pass the method call to the appropriate
instance when it receives such a request over the network.

Figure 2: Communications Implementation11

Figure 2 shows the basic structure of the MultimETH system which is used for the transport of
messages between the editor’s components. The RMC part of the editor code is the package that is

10)A package (in ATK terminology) is a special class with no data and no methods; packages are mainly
used as subroutine libraries.

11) ISODE is a communication system development environment which implements several OSI services
and protocols. MultimETH uses ISODEs implementation of theRemote Operations Service Element
(ROSE) and theAssociation Control Service Element (ACSE) of the OSI application layer.

MultimETH Server MultimETH Client

ISODE ISODE

RMC

Editor
Client

Other Clients

RMC

Editor
Server

Other Servers

System V Message Queues

9

used by various objects to communicate with objects on remote systems. The RMC part is struc-
tured again, i.e. it is divided into two parts.

• The first part of the RMC layer (called rmc module) is the communication independent part.
It is responsible for providing the interface for the objects using RMC procedures. It is used
by all objects which want to call remote methods.

• The second part of the RMC layer (called comm module) is the part dealing with the actual
communication. It is the only part that has to be adapted if a new communication subsystem
(e.g. sockets) is used. The communication requires an order-preserving, non-duplicating, 8
bit transparent service with no length limitations for the messages being sent. If any of these
requirements are not satisfied, they must be implemented within the comm module.

Two comm modules were implemented. The first one uses TCP/IP over stream sockets, which
was easy to implement because they satisfy all requirements listed above12. This module was
used with the first prototype for testing purposes. The second comm module was implemented for
the use of the editor within the conferencing system. Because we used the conferencing system’s
communication mechanisms, the editor was integrated using System V message queues.

The implementation of the message queue comm module was more difficult because we needed a
segmentation/reassembly mechanism to get around the length limitations within message queues.
Now the method calls are segmented at the caller’s side and the comm module on the performer’s
side reassembles the packages. Messages in the message queue are identified using different
mechanisms. The type field in the message structure is used to indicate that the message is for the
editor client or server (and not for one of the other processes also using the message queue). It is
set by the originator of the message to indicate the source of the message. The message is then
transported over the network connection and the conferencing system puts it into the message
queue on the other side. This method makes the distribution of the processes transparent to the
programs using the message queue interface, because they can use the two message queues on
different computer systems as if they were using one local queue.

4.0 Usage of the Editor

The usage of the editor is easy and intuitive if the user is accustomed to the normal ATK editorez.
The additional commands available in the MultimETH menu item are used to reserve regions or
to work with a reservation, depending on where the cursor is located. This is possible because the
ATK provides context-specific menus. Figure 3 shows a screendump of an editing session with
the editor. The object located in the upper half of the window is theaccess object which is used to
store administrative information for a document (such as the change log and access rights). The
reservation is represented by the window with the title bar saying that the reservation belongs to
Peter who does not use autosubmit at the moment.

12)Messages are indicated by NUL-terminated byte streams. NUL was excluded from the range of valid
characters for the message content.

10

There is one special command in the jnote inset’sreservation menu item which has not been men-
tioned until now because it is only of local significance. It is theopen window menu item which
can be used to display a reservation in a separate window. This command is implemented using
ATK’s separation of views and dataobjects. Open window creates a new view in a separate win-
dow (using a new interaction manager and a new frame) and thereby enables the user to either
make changes in the separate window or in the normal reservation window within the document.

Figure 3: Sample Editing Session

A normal way of working with the editor is therefore given by the following sequence of activi-
ties, which is not necessary, but useful for collaborative editing sessions.

• The editing session is started using the conferencing system’s mechanisms. The users who
want to participate in the joint editing must all be active in one conference. They can use the
conferencing system’s communication mechanisms such asbroadcast andchat (the system
also provides audio-conferencing capabilities) to discuss which document should be edited.

11

• After editor clients have been started by all participants13, they see the document without
any reservations (provided that it was not saved with active reservations, which is possible)
and can start looking for the regions they want to edit. Each participant reserves all the
regions he needs. Conflicts are prevented by the server and may be discussed using the con-
ferencing system. After all reservations are made, the document is seen as a sequence of
reserved and unreserved regions.

• Now the participants select theopen window menu item for all reservations they own. They
get a separate window for each reservation. After having opened the separate windows, they
canclose14 their reservations within the document. The participants now can see the docu-
ment with all reservations made by other participants within the document window, while
they can edit their own reservations within the separate windows.

• For each reservation to be committed or unreserved, the appropriate menu item is selected
in the menu bar of the separate window. After having entered the description of the changes
(in case ofcommit), the separate window disappears and the reservation’s icon within the
document is replaced by the modified content. If new reservations are made, the procedure
described above can be applied again.

To avoid the communication overhead that is caused by the client/server connection when the edi-
tor is used by one person only, a stand-alone mode has been implemented. In stand-alone mode,
the client is the only component necessary, and runs without a server. All reservations are handled
locally, which is sufficient because there is only one user. Reservations may exist because docu-
ments can be saved with active reservations. In this case the reservations are still valid when the
document is edited and only free regions or regions belonging to the stand-alone user may be
modified. Stand-alone mode has been implemented by changing all methods which require com-
munications with the server to be performed locally.

Working with the editor showed that in most cases it is sufficient to have asynchronous but peri-
odic updates of the reserved regions. Only in case of very slow network connections, the delay
caused by periodic updates may be too large, but in this case it is possible to reduce the autosub-
mit frequency or only transmit changes when really necessary, using the submit operation. The
editor is not meant for shared whiteboard usage15, which requires a synchronous connection
between the users, so in this case other tools should be used.

There is some other work related to the editor, namely a converter package which can be used to
convert documents in ATK format toRich Text Format (RTF) and back to ATK format. Because
of the differences of ATK and RTF documents, some information may be lost. Reservations can
not be represented in RTF (there is no concept of access restrictions), but they are formatted in a

13)The editor server is started automatically if a conference is opened.
14)Close does not affect the reservation. It is a display oriented command which causes the jnote to be dis-

played as an icon instead of an editable window.
15)Shared whiteboards are used within conferencing applications for sharing a common drawing area

between distributed users. For this type of application it is crucial to have synchronous communications
for immediately sharing drawings and perhaps cursor locations (see e.g. [5]).

12

way similar to the joint editor. Another related project is a browser which allows to browse
through the document space both on the server or on the local machine. It is used as a part of the
conferencing system and can be used to select a document and then launch the editor.

5.0 Conclusions

The design and implementation of an editor for joint multimedia editing has been described. The
underlying model follows a client/server paradigm which divides the editor into user interfaces
(clients) and a central entity (server) which is responsible for administering changes to the docu-
ment. The implementation uses an object-oriented toolkit (ATK) which is capable of dynamically
adding media types to the system. Every new media type needs at least a basic set of methods
which are used to integrate the new objects into the document. Specific methods may be used to
edit and present new types, but they are not necessary from the editor’s point of view. The model
of periodic, asynchronous updates of the reserved regions is suitable for almost all joint editing
uses, except when a high level of synchronicity is required.

Acknowledgments

I would like to thank all people who contributed to the whole project, especially Werner Almes-
berger and Markus Wild, who implemented the first prototype, Daniel Bauer who implemented
many improvements, Niklaus Ruess who built the converter package for exchanging documents
with existing applications, and Germano Caronni who programmed the browser.

Bibliography

[1] Greif, I. (ed.), “Computer Supported Cooperative Work: A Book of Readings”, Morgan
Kaufmann Publishers, Inc., 1988

[2] Lubich, H.P., “MultimETH: Ein Beitrag zur Konzeption eines Echtzeit-Multimedia-Konfer-
enzsystems”, Informatik-Dissertationen ETH Zürich Nr. 20, 1990

[3] Seliger, R., “Design and Implementation of a Distributed Program for Collaborative Edit-
ing”, MS-Thesis, MIT, MIT/LCS/TR-350, 1986

[4] Borenstein, N., “Multimedia Applications Development with the Andrew Toolkit”, Prentice
Hall, 1990

[5] Lubich, H.P., “A Small Conferencing System and Shared Whiteboard as a Testbed for Dis-
tributed Multimedia Applications Using OSI Protocols”, submitted to IFIP 6.5 ULPAA ’94

